How to use record_summary method in autotest

Best Python code snippet using autotest_python

after_analysis2.py

Source:after_analysis2.py Github

copy

Full Screen

...38 for row in csvReader:39 record = Record(*row)40 listOfRecords.append(record)41 return listOfRecords42def record_summary(listOfRecords):43 """44 description:45 args:46 return:47 """48 summaryRecords = defaultdict()49 count = 050 age = defaultdict(int)51 adt = 052 material = defaultdict(int)53 for record in listOfRecords:54 try:55 year = record.year56 county = record.countyCode57 yearReconstructed = record.yearReconstructed58 deck = record.deck59 adt = record.averageDailyTraffic60 structType = record.structureType61 except:62 pass63 return listOfRecords64def to_csv(output, filename):65 """66 description:67 args:68 return:69 """70 outputNew = list()71 #output = [item._asdict() for item in output]72 for item in output:73 try:74 outputNew.append(item._asdict())75 except:76 outputNew.append(None)77 output = outputNew78 fieldnames = ['year',79 'stateCode',80 'structureNumber',81 'countyCode',82 'yearBuilt',83 'averageDailyTraffic',84 'deck',85 'yearReconstructed',86 'avgDailyTruckTraffic',87 'material',88 'structureType'89 ]90 with open(filename, 'w') as csvFile:91 csvWriter = csv.DictWriter(csvFile, delimiter=',', fieldnames=fieldnames)92 csvWriter.writeheader()93 for row in output:94 if row == None:95 #NoneDict = dict(zip(fieldnames, [None]*len(fieldnames)))96 #csvWriter.writerow(NoneDict)97 pass98 else:99 csvWriter.writerow(row)100def main():101 path = '../../../../data/nbi/'102 os.chdir(path)103 rfBridges = 'bridgesRf.csv'104 rfNBridges = 'bridgesRfNegative.csv'105 flBridges = 'bridgesFl.csv'106 flNBridges = 'bridgesFlNegative.csv'107 ##False Positive and false negatives108 bothFalsePositive = 'bFP.csv'109 bothFalseNegative = 'bFN.csv'110 bothTruePositive ='bTP.csv'111 bothTrueNegative ='bTN.csv'112 nbiFile = 'nebraska1992-2019.csv'113 # Read structure Number114 rfList = read_structure_numbers(rfBridges)115 rfNList = read_structure_numbers(rfNBridges)116 flList = read_structure_numbers(flBridges)117 flNList = read_structure_numbers(flNBridges)118 # read structure of false positive and negative119 bFNList = read_structure_numbers(bothFalseNegative)120 bFPList = read_structure_numbers(bothFalsePositive)121 bTPList = read_structure_numbers(bothTruePositive)122 bTNList = read_structure_numbers(bothTrueNegative)123 # read nbi records124 nbiList = read_nbi_records(nbiFile)125 # gather structure number126 structNumbers = list()127 for nbiRecord in nbiList:128 structNumber = nbiRecord.structureNumber129 structNumbers.append(structNumber)130 # create dictionary of structure numbers131 nbiDict = defaultdict()132 for structNumber, nbiRecord in zip(structNumbers, nbiList):133 nbiDict[structNumber] = nbiRecord134 rfBridgeRecords = list()135 rfNBridgeRecords = list()136 flowBridgeRecords = list()137 flowNBridgeRecords = list()138 bFNRecords = list()139 bFPRecords = list()140 bTNRecords = list()141 bTPRecords = list()142 for structNum in rfList:143 rfBridgeRecords.append(nbiDict.get(structNum))144 for structNum in rfNList:145 rfNBridgeRecords.append(nbiDict.get(structNum))146 for structNum in flList:147 flowBridgeRecords.append(nbiDict.get(structNum))148 for structNum in flNList:149 flowNBridgeRecords.append(nbiDict.get(structNum))150 # False Positive and False Negative151 for structNum in bFNList:152 bFNRecords.append(nbiDict.get(structNum))153 for structNum in bFPList:154 bFPRecords.append(nbiDict.get(structNum))155 for structNum in bTPList:156 bTPRecords.append(nbiDict.get(structNum))157 for structNum in bTNList:158 bTNRecords.append(nbiDict.get(structNum))159 # Average random forest age, adt, adtt, year of resconstruction160 outputRf = record_summary(rfBridgeRecords)161 to_csv(outputRf, 'TrueRfFalseFl.csv')162 outputRfN = record_summary(rfNBridgeRecords)163 to_csv(outputRfN, 'TrueRfNFalseFlN.csv')164 outputFlow = record_summary(flowBridgeRecords)165 to_csv(outputFlow, 'TrueFlFalseRf.csv')166 outputFlowN = record_summary(flowNBridgeRecords)167 to_csv(outputFlowN, 'TrueFlNFalseRfN.csv')168 outputbFN = record_summary(bFNRecords)169 to_csv(outputbFN, 'bFNRecords.csv')170 outputbFP = record_summary(bFPRecords)171 to_csv(outputbFP, 'bFPRecords.csv')172 outputbTP = record_summary(bTPRecords)173 to_csv(outputbTP, 'bTPRecords.csv')174 outputbTN = record_summary(bTNRecords)175 to_csv(outputbTN, 'bTNRecords.csv')176if __name__== "__main__":...

Full Screen

Full Screen

parse_heartrate_summary_json.py

Source:parse_heartrate_summary_json.py Github

copy

Full Screen

1import json2import pandas as pd3HR_SUMMARY_COLUMNS = ("device_id",4 "local_date_time",5 "timestamp",6 "heartrate_daily_restinghr",7 "heartrate_daily_caloriesoutofrange",8 "heartrate_daily_caloriesfatburn",9 "heartrate_daily_caloriescardio",10 "heartrate_daily_caloriespeak")11def parseHeartrateSummaryData(record_summary, device_id, curr_date):12 # API Version X: not sure the exact version13 if "heartRateZones" in record_summary:14 heartrate_zones = record_summary["heartRateZones"]15 d_resting_heartrate = record_summary["value"] if "value" in record_summary else None16 # API VERSION Y: not sure the exact version17 elif "value" in record_summary:18 heartrate_zones = record_summary["value"]["heartRateZones"]19 d_resting_heartrate = record_summary["value"]["restingHeartRate"] if "restingHeartRate" in record_summary["value"] else None20 else:21 ValueError("Heartrate zone are stored in an unkown format, this could mean Fitbit's heartrate API changed")22 23 if "caloriesOut" in heartrate_zones[0]:24 d_calories_outofrange = heartrate_zones[0]["caloriesOut"]25 d_calories_fatburn = heartrate_zones[1]["caloriesOut"]26 d_calories_cardio = heartrate_zones[2]["caloriesOut"]27 d_calories_peak = heartrate_zones[3]["caloriesOut"]28 else:29 d_calories_outofrange, d_calories_fatburn, d_calories_cardio, d_calories_peak = None, None, None, None30 31 row_summary = (device_id,32 curr_date,33 0,34 d_resting_heartrate,35 d_calories_outofrange,36 d_calories_fatburn,37 d_calories_cardio,38 d_calories_peak)39 return row_summary40def parseHeartrateData(heartrate_data):41 if heartrate_data.empty:42 return pd.DataFrame(columns=HR_SUMMARY_COLUMNS)43 device_id = heartrate_data["device_id"].iloc[0]44 records_summary = []45 # Parse JSON into individual records46 for record in heartrate_data.json_fitbit_column:47 record = json.loads(record) # Parse text into JSON48 if "activities-heart" in record:49 curr_date = record["activities-heart"][0]["dateTime"] + " 00:00:00"50 record_summary = record["activities-heart"][0]51 row_summary = parseHeartrateSummaryData(record_summary, device_id, curr_date)52 records_summary.append(row_summary)53 parsed_data = pd.DataFrame(data=records_summary, columns=HR_SUMMARY_COLUMNS)54 return parsed_data55 56def main(json_raw, stream_parameters):57 parsed_data = parseHeartrateData(json_raw)...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run autotest automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful