Best Python code snippet using autotest_python
report_manager.py
Source:report_manager.py
1""" Report manager utility """2from __future__ import print_function3import time4from datetime import datetime5import onmt6from onmt.utils.logging import logger7def build_report_manager(opt, gpu_rank):8 if opt.tensorboard and gpu_rank == 0:9 from torch.utils.tensorboard import SummaryWriter10 tensorboard_log_dir = opt.tensorboard_log_dir11 if not opt.train_from:12 tensorboard_log_dir += datetime.now().strftime("/%b-%d_%H-%M-%S")13 writer = SummaryWriter(tensorboard_log_dir, comment="Unmt")14 else:15 writer = None16 report_mgr = ReportMgr(opt.report_every, start_time=-1,17 tensorboard_writer=writer)18 return report_mgr19class ReportMgrBase(object):20 """21 Report Manager Base class22 Inherited classes should override:23 * `_report_training`24 * `_report_step`25 """26 def __init__(self, report_every, start_time=-1.):27 """28 Args:29 report_every(int): Report status every this many sentences30 start_time(float): manually set report start time. Negative values31 means that you will need to set it later or use `start()`32 """33 self.report_every = report_every34 self.start_time = start_time35 def start(self):36 self.start_time = time.time()37 def log(self, *args, **kwargs):38 logger.info(*args, **kwargs)39 def report_training(self, step, num_steps, learning_rate,40 report_stats, multigpu=False):41 """42 This is the user-defined batch-level traing progress43 report function.44 Args:45 step(int): current step count.46 num_steps(int): total number of batches.47 learning_rate(float): current learning rate.48 report_stats(Statistics): old Statistics instance.49 Returns:50 report_stats(Statistics): updated Statistics instance.51 """52 if self.start_time < 0:53 raise ValueError("""ReportMgr needs to be started54 (set 'start_time' or use 'start()'""")55 if step % self.report_every == 0:56 if multigpu:57 report_stats = \58 onmt.utils.Statistics.all_gather_stats(report_stats)59 self._report_training(60 step, num_steps, learning_rate, report_stats)61 return [onmt.utils.Statistics(name=x.name) for x in report_stats]62 else:63 return report_stats64 def _report_training(self, *args, **kwargs):65 """ To be overridden """66 raise NotImplementedError()67 def report_step(self, lr, step, train_stats=None, valid_stats=None):68 """69 Report stats of a step70 Args:71 train_stats(Statistics): training stats72 valid_stats(Statistics): validation stats73 lr(float): current learning rate74 """75 self._report_step(76 lr, step, train_stats=train_stats, valid_stats=valid_stats)77 def _report_step(self, *args, **kwargs):78 raise NotImplementedError()79class ReportMgr(ReportMgrBase):80 def __init__(self, report_every, start_time=-1., tensorboard_writer=None):81 """82 A report manager that writes statistics on standard output as well as83 (optionally) TensorBoard84 Args:85 report_every(int): Report status every this many sentences86 tensorboard_writer(:obj:`tensorboard.SummaryWriter`):87 The TensorBoard Summary writer to use or None88 """89 super(ReportMgr, self).__init__(report_every, start_time)90 self.tensorboard_writer = tensorboard_writer91 def maybe_log_tensorboard(self, stats, prefix, learning_rate, step):92 if self.tensorboard_writer is not None:93 stats.log_tensorboard(94 prefix, self.tensorboard_writer, learning_rate, step)95 def _report_training(self, step, num_steps, learning_rate,96 report_stats):97 """98 See base class method `ReportMgrBase.report_training`.99 """100 output_report_stats = []101 for _report_stats in report_stats:102 if _report_stats.n_words == 0:103 continue104 _report_stats.output(step, num_steps,105 learning_rate, self.start_time)106 # Log the progress using the number of batches on the x-axis.107 self.maybe_log_tensorboard(_report_stats,108 "progress_"+_report_stats.name,109 learning_rate,110 step)111 _report_stats = onmt.utils.Statistics(_report_stats.name)112 output_report_stats.append(_report_stats)113 return output_report_stats114 def _report_step(self, lr, step, train_stats=None, valid_stats=None):115 """116 See base class method `ReportMgrBase.report_step`.117 """118 if train_stats:119 for _train_stats in train_stats:120 self.log('Train name: %s' % _train_stats.name)121 self.log('Train perplexity: %g' % _train_stats.ppl())122 self.log('Train accuracy: %g' % _train_stats.accuracy())123 self.maybe_log_tensorboard(_train_stats,124 "train_"+_train_stats.name,125 lr,126 step)127 if valid_stats:128 for _valid_stats in valid_stats:129 if _valid_stats.n_words == 0:130 continue131 self.log('Validation name: %s' % _valid_stats.name)132 self.log('Validation perplexity: %g' % _valid_stats.ppl())133 self.log('Validation accuracy: %g' % _valid_stats.accuracy())134 self.maybe_log_tensorboard(_valid_stats,135 "valid_"+_valid_stats.name,136 lr,...
metrics.py
Source:metrics.py
...42 return r.ok43def run_reporter(stats_key):44 stats = StatHat(stats_key, 'localtunnel.')45 logging.info("starting metrics reporter with {0}".format(stats_key))46 def _report_stats():47 dump = {}48 for m in dump_metrics():49 dump[m['name']] = m['value']50 for metric in monitored_metrics:51 value = dump.get(metric)52 if value:53 if metric.startswith('collect:'):54 # metrics starting with "collect:" are55 # counters that will be reset once reported56 stats.count(metric.split(':')[-1], value)57 metric_name = metric.split('_count')[0]58 counter(metric_name).clear()59 else:60 stats.value(metric, value)...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!