Best Python code snippet using yandex-tank
xception.py
Source:xception.py
...8 aligned_xception.preprocess_input)9def AlignedXception41Stride16(*args, **kwargs):10 base = AlignedXception41(*args, **kwargs)11 conf = base.get_config()12 conf = patch_config(conf, ['exit_flow/block1/unit1/sepconv3_depthwise'], 'strides', (1, 1))13 conf = patch_config(conf, ['exit_flow/block1/unit1/shortcut'], 'strides', (1, 1))14 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv1_depthwise'], 'dilation_rate', (2, 2))15 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv2_depthwise'], 'dilation_rate', (2, 2))16 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv3_depthwise'], 'dilation_rate', (2, 2))17 patch = models.Model.from_config(conf)18 patch.set_weights(base.get_weights())19 return patch20def AlignedXception41Stride8(*args, **kwargs):21 base = AlignedXception41(*args, **kwargs)22 conf = base.get_config()23 conf = patch_config(conf, ['entry_flow/block3/unit1/sepconv3_depthwise'], 'strides', (1, 1))24 conf = patch_config(conf, ['entry_flow/block3/unit1/shortcut'], 'strides', (1, 1))25 for i in range(8):26 conf = patch_config(conf, [27 'middle_flow/block1/unit{}/sepconv1_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))28 conf = patch_config(conf, [29 'middle_flow/block1/unit{}/sepconv2_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))30 conf = patch_config(conf, [31 'middle_flow/block1/unit{}/sepconv3_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))32 conf = patch_config(conf, ['exit_flow/block1/unit1/sepconv3_depthwise'], 'strides', (1, 1))33 conf = patch_config(conf, ['exit_flow/block1/unit1/shortcut'], 'strides', (1, 1))34 # Output shape is different when using exit dilation rates like in35 # https://github.com/bonlime/keras-deeplab-v3-plus/blob/master/model.py#L26536 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv1_depthwise'], 'dilation_rate', (2, 2))37 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv2_depthwise'], 'dilation_rate', (2, 2))38 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv3_depthwise'], 'dilation_rate', (2, 2))39 patch = models.Model.from_config(conf)40 patch.set_weights(base.get_weights())41 return patch42AlignedXception65 = partial(43 wrap_bone,44 aligned_xception.Xception65,45 aligned_xception.preprocess_input)46def AlignedXception65Stride16(*args, **kwargs):47 base = AlignedXception65(*args, **kwargs)48 conf = base.get_config()49 conf = patch_config(conf, ['exit_flow/block1/unit1/sepconv3_depthwise'], 'strides', (1, 1))50 conf = patch_config(conf, ['exit_flow/block1/unit1/shortcut'], 'strides', (1, 1))51 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv1_depthwise'], 'dilation_rate', (2, 2))52 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv2_depthwise'], 'dilation_rate', (2, 2))53 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv3_depthwise'], 'dilation_rate', (2, 2))54 patch = models.Model.from_config(conf)55 patch.set_weights(base.get_weights())56 return patch57def AlignedXception65Stride8(*args, **kwargs):58 base = AlignedXception65(*args, **kwargs)59 conf = base.get_config()60 conf = patch_config(conf, ['entry_flow/block3/unit1/sepconv3_depthwise'], 'strides', (1, 1))61 conf = patch_config(conf, ['entry_flow/block3/unit1/shortcut'], 'strides', (1, 1))62 for i in range(16):63 conf = patch_config(conf, [64 'middle_flow/block1/unit{}/sepconv1_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))65 conf = patch_config(conf, [66 'middle_flow/block1/unit{}/sepconv2_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))67 conf = patch_config(conf, [68 'middle_flow/block1/unit{}/sepconv3_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))69 conf = patch_config(conf, ['exit_flow/block1/unit1/sepconv3_depthwise'], 'strides', (1, 1))70 conf = patch_config(conf, ['exit_flow/block1/unit1/shortcut'], 'strides', (1, 1))71 # Output shape is different when using exit dilation rates like in72 # https://github.com/bonlime/keras-deeplab-v3-plus/blob/master/model.py#L26573 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv1_depthwise'], 'dilation_rate', (2, 2))74 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv2_depthwise'], 'dilation_rate', (2, 2))75 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv3_depthwise'], 'dilation_rate', (2, 2))76 patch = models.Model.from_config(conf)77 patch.set_weights(base.get_weights())78 return patch79AlignedXception71 = partial(80 wrap_bone,81 aligned_xception.Xception71,82 aligned_xception.preprocess_input)83def AlignedXception71Stride16(*args, **kwargs):84 base = AlignedXception71(*args, **kwargs)85 conf = base.get_config()86 conf = patch_config(conf, ['exit_flow/block1/unit1/sepconv3_depthwise'], 'strides', (1, 1))87 conf = patch_config(conf, ['exit_flow/block1/unit1/shortcut'], 'strides', (1, 1))88 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv1_depthwise'], 'dilation_rate', (2, 2))89 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv2_depthwise'], 'dilation_rate', (2, 2))90 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv3_depthwise'], 'dilation_rate', (2, 2))91 patch = models.Model.from_config(conf)92 patch.set_weights(base.get_weights())93 return patch94def AlignedXception71Stride8(*args, **kwargs):95 base = AlignedXception71(*args, **kwargs)96 conf = base.get_config()97 conf = patch_config(conf, ['entry_flow/block5/unit1/sepconv3_depthwise'], 'strides', (1, 1))98 conf = patch_config(conf, ['entry_flow/block5/unit1/shortcut'], 'strides', (1, 1))99 for i in range(16):100 conf = patch_config(conf, [101 'middle_flow/block1/unit{}/sepconv1_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))102 conf = patch_config(conf, [103 'middle_flow/block1/unit{}/sepconv2_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))104 conf = patch_config(conf, [105 'middle_flow/block1/unit{}/sepconv3_depthwise'.format(i + 1)], 'dilation_rate', (2, 2))106 conf = patch_config(conf, ['exit_flow/block1/unit1/sepconv3_depthwise'], 'strides', (1, 1))107 conf = patch_config(conf, ['exit_flow/block1/unit1/shortcut'], 'strides', (1, 1))108 # Output shape is different when using exit dilation rates like in109 # https://github.com/bonlime/keras-deeplab-v3-plus/blob/master/model.py#L265110 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv1_depthwise'], 'dilation_rate', (2, 2))111 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv2_depthwise'], 'dilation_rate', (2, 2))112 conf = patch_config(conf, ['exit_flow/block2/unit1/sepconv3_depthwise'], 'dilation_rate', (2, 2))113 patch = models.Model.from_config(conf)114 patch.set_weights(base.get_weights())...
luna_s3_p8.py
Source:luna_s3_p8.py
1import data_transforms2import data_iterators3import pathfinder4import utils5import string6import numpy as np7import lasagne as nn8# IMPORT A CORRECT PATCH MODEL HERE9import lung_segmentation10import configs_seg_patch.luna_p8 as patch_config11# print utils.get_script_name(__file__).split('_')[-1]12# print patch_config.__name__.split('.')[-1]13# assert utils.get_script_name(__file__).replace('_s*_', '_') == patch_config.__name__.split('.')[-1]14rng = patch_config.rng15# calculate the following things correctly!16p_transform = {'patch_size': (416, 416, 416),17 'mm_patch_size': (416, 416, 416),18 'pixel_spacing': patch_config.p_transform['pixel_spacing']19 }20window_size = 16021stride = 12822n_windows = (p_transform['patch_size'][0] - window_size) / stride + 123valid_pids = patch_config.valid_pids24def data_prep_function(data, luna_annotations, pixel_spacing, luna_origin,25 p_transform=p_transform,26 p_transform_augment=None):27 # make sure the data is processed the same way28 lung_mask = lung_segmentation.segment_HU_scan(data)29 x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=data,30 pixel_spacing=pixel_spacing,31 p_transform=p_transform,32 luna_annotations=luna_annotations,33 p_transform_augment=None,34 luna_origin=luna_origin,35 lung_mask=lung_mask)36 x = data_transforms.pixelnormHU(x)37 y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')38 return x, y, lung_mask_out, annotations_tf, tf_matrix39valid_data_iterator = data_iterators.LunaScanPositiveLungMaskDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,40 transform_params=p_transform,41 data_prep_fun=data_prep_function,42 rng=rng,43 batch_size=1,44 patient_ids=valid_pids,45 full_batch=True,46 random=False, infinite=False)47def build_model():48 metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)49 metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])50 metadata = utils.load_pkl(metadata_path)51 print 'Build model'52 model = patch_config.build_model(patch_size=(window_size, window_size, window_size))53 all_layers = nn.layers.get_all_layers(model.l_out)54 num_params = nn.layers.count_params(model.l_out)55 print ' number of parameters: %d' % num_params56 print string.ljust(' layer output shapes:', 36),57 print string.ljust('#params:', 10),58 print 'output shape:'59 for layer in all_layers:60 name = string.ljust(layer.__class__.__name__, 32)61 num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])62 num_param = string.ljust(num_param.__str__(), 10)63 print ' %s %s %s' % (name, num_param, layer.output_shape)64 nn.layers.set_all_param_values(model.l_out, metadata['param_values'])...
luna_s2_p8.py
Source:luna_s2_p8.py
1import data_transforms2import data_iterators3import pathfinder4import utils5import string6import numpy as np7import lasagne as nn8# IMPORT A CORRECT PATCH MODEL HERE9import configs_seg_patch.luna_p8 as patch_config10# print utils.get_script_name(__file__).split('_')[-1]11# print patch_config.__name__.split('.')[-1]12# assert utils.get_script_name(__file__).replace('_s*_', '_') == patch_config.__name__.split('.')[-1]13rng = patch_config.rng14# calculate the following things correctly!15p_transform = {'patch_size': (416, 416, 416),16 'mm_patch_size': (416, 416, 416),17 'pixel_spacing': patch_config.p_transform['pixel_spacing']18 }19window_size = 16020stride = 12821n_windows = (p_transform['patch_size'][0] - window_size) / stride + 122valid_pids = patch_config.valid_pids23def data_prep_function(data, luna_annotations, pixel_spacing, luna_origin,24 p_transform=p_transform,25 p_transform_augment=None):26 # make sure the data is processed the same way 27 x, annotations_tf, tf_matrix = data_transforms.transform_scan3d(data=data,28 pixel_spacing=pixel_spacing,29 p_transform=p_transform,30 luna_annotations=luna_annotations,31 p_transform_augment=None,32 luna_origin=luna_origin)33 x = data_transforms.pixelnormHU(x)34 y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')35 return x, y, annotations_tf, tf_matrix36valid_data_iterator = data_iterators.LunaScanPositiveDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,37 transform_params=p_transform,38 data_prep_fun=data_prep_function,39 rng=rng,40 patient_ids=valid_pids,41 random=False, infinite=False)42def build_model():43 metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)44 metadata_path = utils.find_model_metadata(metadata_dir, patch_config.__name__.split('.')[-1])45 metadata = utils.load_pkl(metadata_path)46 print 'Build model'47 model = patch_config.build_model(patch_size=(window_size, window_size, window_size))48 all_layers = nn.layers.get_all_layers(model.l_out)49 num_params = nn.layers.count_params(model.l_out)50 print ' number of parameters: %d' % num_params51 print string.ljust(' layer output shapes:', 36),52 print string.ljust('#params:', 10),53 print 'output shape:'54 for layer in all_layers:55 name = string.ljust(layer.__class__.__name__, 32)56 num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])57 num_param = string.ljust(num_param.__str__(), 10)58 print ' %s %s %s' % (name, num_param, layer.output_shape)59 nn.layers.set_all_param_values(model.l_out, metadata['param_values'])...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!