How to use get_progress_logger method in yandex-tank

Best Python code snippet using yandex-tank

benchmark_pipeline_interval_trenscend.py

Source:benchmark_pipeline_interval_trenscend.py Github

copy

Full Screen

...28 self.list_of_parameter_to_modified_value_dictionary = self.generate_parameter_to_modified_value_dictionary_for_each_pipeline(base_nameserver_port=self.base_nameserver_port, max_tuning_interval=self.max_tuning_interval, number_of_repeat_for_each_pipeline=self.number_of_repeat_for_each_pipeline)29 if self.run_multiprocessing:30 self.start_multiprocessing()31 def do_a_run_of_pipeline(self, parameter_to_modified_value_dictionary, file_path_for_saving_result, do_multiprocessing_dry_run=False):32 progress_logger = get_progress_logger()33 progress_logger.info('start doing one run of pipeline: ' + file_path_for_saving_result)34 progress_logger.info('the param dict for ' + file_path_for_saving_result + ' is: ' + str(parameter_to_modified_value_dictionary))35 print('start running pipeline: ')36 print(parameter_to_modified_value_dictionary)37 if not do_multiprocessing_dry_run:38 pipeLineTuningIntervalTranscend = PipeLineTuningIntervalTranscend(**parameter_to_modified_value_dictionary)39 AnalyzerPipeLineAutoForecastVA.save_analyzer_result_in_a_memory_efficient_way(pipeLineTuningIntervalTranscend.pipeLineAutoForecastVA, file_name=file_path_for_saving_result)40 progress_logger.info('end doing one run of pipeline: ' + file_path_for_saving_result)41 print('completed: ' + file_path_for_saving_result)42 print(parameter_to_modified_value_dictionary)43 def start_multiprocessing(self):44 progress_logger = get_progress_logger()45 progress_logger.info('starting multiprocessing')46 multiprocess_manager = ProcessLoom(max_runner_cap=self.max_runner_cap)47 for parameter_to_modified_value_dictionary in self.list_of_parameter_to_modified_value_dictionary:48 md5_code = ComputeCharacterizationCodeAndMd5Code.get_class_MD5_code(target_class=PipeLineTuningIntervalTranscend, parameter_to_modified_value_dictionary=parameter_to_modified_value_dictionary, store=True, md5_to_parameter_to_value_mapping_file_path=self.md5_to_parameter_to_value_mapping_file_path)49 file_path_for_saving_result = 'results/'+md5_code50 multiprocess_manager.add_function(self.do_a_run_of_pipeline, kwargs={'parameter_to_modified_value_dictionary': parameter_to_modified_value_dictionary, 'file_path_for_saving_result': file_path_for_saving_result, 'do_multiprocessing_dry_run': self.do_multiprocessing_dry_run}, key=md5_code)51 self.output = multiprocess_manager.execute()52 @staticmethod53 def generate_parameter_to_modified_value_dictionary_for_each_pipeline(base_nameserver_port=65100, max_tuning_interval=999999999, number_of_repeat_for_each_pipeline=5):54 '''Generate a list of kwargs, one for each pipeline'''55 # tuning interval56 list_of_tuning_interval_dict = []57 for interval in [5]:58 parameter_to_modified_value_dictionary = {}...

Full Screen

Full Screen

benchmark_pipeline_autova.py

Source:benchmark_pipeline_autova.py Github

copy

Full Screen

...27 if not self.lazy:28 if self.run_multiprocessing:29 self.start_multiprocessing()30 def do_a_run_of_pipeline(self, parameter_to_modified_value_dictionary, file_path_for_saving_result, do_multiprocessing_dry_run=False):31 progress_logger = get_progress_logger(logger_name=self.logger_name, log_output_file_path=os.path.join(self.folder_name_to_save_results, self.log_output_file_name))32 progress_logger.info('start doing one run of pipeline: ' + file_path_for_saving_result)33 progress_logger.info('the param dict for ' + file_path_for_saving_result + ' is: ' + str(parameter_to_modified_value_dictionary))34 print('start running pipeline: ')35 print(parameter_to_modified_value_dictionary)36 timerDefault = TimerDefault(time_unit='hour')37 timerDefault.start()38 if not do_multiprocessing_dry_run:39 pipeLineTuningInterval = PipeLineTuningInterval(**parameter_to_modified_value_dictionary)40 AnalyzerPipeLineAutoForecastVA.save_analyzer_result_in_a_memory_efficient_way(pipeLineTuningInterval.pipeLineAutoForecastVA, file_name=file_path_for_saving_result)41 timerDefault.end()42 progress_logger.info('end doing one run of pipeline: ' + file_path_for_saving_result + ' ' + 'duration(hours): ' + str(timerDefault.get_duration()))43 print('completed: ' + file_path_for_saving_result)44 print(parameter_to_modified_value_dictionary)45 def start_multiprocessing(self):46 # progress_logger = get_progress_logger(logger_name=self.logger_name, log_output_file_path=os.path.join(self.folder_name_to_save_results, self.log_output_file_name))47 # progress_logger.info('starting multiprocessing') # cannot do logging untill creates the folder48 multiprocess_manager = ProcessLoom(max_runner_cap=self.max_runner_cap)49 for parameter_to_modified_value_dictionary in self.list_of_input_dictionary:50 md5_code = ComputeCharacterizationCodeAndMd5Code.get_class_MD5_code(target_class=PipeLineTuningInterval, parameter_to_modified_value_dictionary=parameter_to_modified_value_dictionary, store=True, md5_to_parameter_to_value_mapping_file_path=os.path.join(self.folder_name_to_save_results, self.md5_to_parameter_to_value_mapping_file_name))51 file_path_for_saving_result = self.folder_name_to_save_results + '/' + md5_code + '.dat'52 multiprocess_manager.add_function(self.do_a_run_of_pipeline, kwargs={'parameter_to_modified_value_dictionary': parameter_to_modified_value_dictionary, 'file_path_for_saving_result': file_path_for_saving_result, 'do_multiprocessing_dry_run': self.do_multiprocessing_dry_run}, key=md5_code)...

Full Screen

Full Screen

queue_deduplicate.py

Source:queue_deduplicate.py Github

copy

Full Screen

...27 ),28 )29 original_size, new_size = backend.deduplicate(30 queue,31 progress_logger=self.get_progress_logger(),32 )33 if original_size == new_size:34 self.stdout.write(35 "No duplicate jobs detected (queue length remains {})".format(36 original_size,37 ),38 )39 else:40 self.stdout.write(41 "Deduplication reduced the queue from {} jobs to {} job(s)".format(42 original_size,43 new_size,44 ),45 )46 def get_progress_logger(self) -> ProgressLogger:47 try:48 import tqdm49 progress = tqdm.tqdm50 except ImportError:51 def progress(iterable: T) -> T:52 return iterable...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run yandex-tank automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful