Best Python code snippet using tempest_python
data_split.py
Source: data_split.py
1import os2import pandas as pd3import numpy as np4import argparse5import random67parser = argparse.ArgumentParser(description='data_split')8parser.add_argument('--data_path', default='./Amazon-office-raw/ratings.csv', type=str,9 help='datapath')10parser.add_argument('--save_path', default='./Amazon-office-raw', type=str,11 help='savepath')12parser.add_argument('--negative_sampling', default=True, type=bool,13 help='test negative sampling')14args = parser.parse_args()15random.seed(1)1617ratings=pd.read_csv(args.data_path)18type=['ratio-split','leave-one-out']19# indexing user20user_id=ratings[['userid']].drop_duplicates().reset_index(drop=True)21user_id['useridx']=pd.DataFrame(np.arange(len(user_id)))22userdict=dict(zip(user_id['userid'],user_id['useridx']))23ratings=ratings.replace({'userid':userdict})2425#indexing item26item_id=ratings[['itemid']].drop_duplicates().reset_index(drop=True)27item_id['itemidx']=pd.DataFrame(np.arange(len(item_id)))28itemdict=dict(zip(item_id['itemid'],item_id['itemidx']))29ratings=ratings.replace({'itemid':itemdict})3031# group items according to user index32items_set=set(item_id['itemidx'])33#ratings['rate'][ratings['rate']>0]=1.034rating1=ratings.groupby('userid')['itemid'].apply(list).reset_index()35rating2=ratings.groupby('userid')['timestamp'].apply(list).reset_index()3637# split38for split_type in type:39 ratings = pd.concat([rating1[['userid', 'itemid']], rating2['timestamp']], axis=1)40 if split_type=='leave-one-out':41 ratings['test_positive_index']=ratings['timestamp'].apply(lambda x: np.array(x).argmax())42 ratings['test_positive']=ratings.apply(lambda x: x['itemid'][x['test_positive_index']], axis=1)43 ratings['negative']=ratings['itemid'].apply(lambda x: list(items_set - set(x)))44 ratings['test_negative']=ratings['negative'].apply(lambda x: random.sample(x, 99))45 ratings['train_negative']=ratings.apply(lambda x: list(items_set - set(x['itemid']) - set(x['test_negative'])), axis=1)46 ratings.apply(lambda x: x['itemid'].remove(x['test_positive']), axis=1)474849 elif split_type=='ratio-split':50 ratings['test_positive']=ratings['itemid'].apply(lambda x: random.sample(x, round(len(x)*0.2)))51 ratings['itemid']=ratings.apply(lambda x: list(set(x['itemid'])-set(x['test_positive'])), axis=1)52 ratings['train_negative']=ratings.apply(lambda x: list(items_set - set(x['itemid'])),axis=1)53 if args.negative_sampling:54 ratings['test_negative']=ratings.apply(lambda x: random.sample(list(items_set - set(x['itemid'])- set(x['test_positive'])),len(x['test_positive']*10))55 if len(x['test_positive'])*10 <= len(list(items_set-set(x['itemid'])-set(x['test_positive']))) else list(items_set - set(x['itemid'])- set(x['test_positive'])), axis=1)5657 else :58 ratings['test_negative']=ratings.apply(lambda x: list(items_set - set(x['itemid'])- set(x['test_positive'])), axis=1)59 ratings['train_negative'] = ratings.apply(lambda x: list(set(x['train_negative'])-set(x['test_negative'])), axis=1)6061 ratings.rename(columns = {'itemid':'train_positive'}, inplace = True)62 ratings = ratings[['userid','train_positive','test_positive','train_negative', 'test_negative']].reset_index(drop=True)63 train_positive=ratings.join(ratings['train_positive'].apply(lambda x:pd.Series(x)).stack().reset_index(1,name='train_pos').drop('level_1',axis=1))64 test_positive=ratings.join(ratings['test_positive'].apply(lambda x:pd.Series(x)).stack().reset_index(1,name='test_pos').drop('level_1',axis=1))6566 # save67 if not os.path.exists(os.path.join(args.save_path, split_type)):68 os.makedirs(os.path.join(args.save_path, split_type))69 train_positive[['userid','train_pos']].reset_index(drop=True).to_feather(os.path.join(args.save_path,split_type, 'train_positive.ftr'))70 test_positive[['userid','test_pos']].reset_index(drop=True).to_feather(os.path.join(args.save_path,split_type, 'test_positive.ftr'))71 ratings[['userid','train_negative']].reset_index(drop=True).to_feather(os.path.join(args.save_path,split_type, 'train_negative.ftr'))72 ratings[['userid','test_negative']].reset_index(drop=True).to_feather(os.path.join(args.save_path,split_type, 'test_negative.ftr'))7374if not os.path.exists(os.path.join(args.save_path,'index-info')):75 os.makedirs(os.path.join(args.save_path,'index-info'))76user_id.to_csv(os.path.join(args.save_path,'index-info', 'user_index.csv'),index=False)
...
evaluation_random_classifier.py
Source: evaluation_random_classifier.py
1import json2import subprocess3import sys4import os5import time6from PIL import Image7from numpy import average, dot, linalg8import cv29import skimage.measure10import os11import subprocess12import random13import numpy14# give a list for psc2code video dealing time15# def getlist_psc2code():16# output = {}17# rightlist = []18# faultlist = []19# database = "data_copy/test"20# for category in os.listdir(database):21# # print(category) 22# if category == "non-screencast":23# for video in os.listdir(os.path.join(database,category)):24# rightlist.append(video)25# for img in os.listdir(os.path.join(database,category,video)):26# # if "frame" not in img:27# # print(img)28# output[video] = int(1.6*len(os.listdir(os.path.join(database,category,video))))29# else:30# for video in os.listdir(os.path.join(database,category)):31# faultlist.append(video)32# for img in os.listdir(os.path.join(database,category,video)):33# # if "frame" not in img:34# # print(img)35# output[video] = len(os.listdir(os.path.join(database,category,video)))36# return output,rightlist,faultlist37# psc2codelist,nonlist,yeslist = getlist_psc2code()38# count = 039# for video in psc2codelist.keys():40# psc2codelist[video] = int(psc2codelist[video]*1.88)41# count+= psc2codelist[video]42# print(len(nonlist))43# print(len(yeslist))44# # wrong one: MkJ1jY8ubKs45# # 2.5å46# def random1():47# count = 048# test_positive = random.sample(list(psc2codelist), k=13)49# test_negative = list(set(list(psc2codelist)).difference(set(test_positive)))50# # print(len(list(psc2codelist)))51# # print(len(test_positive))52# # print(len(test_negative))53# tp = 054# fp = 055# fn = 056# for item in test_positive:57# if item in yeslist:58# tp += 159# if item in nonlist:60# fp+=161# for item in test_negative:62# if item in yeslist:63# fn+=164# return tp,fp,fn65# allpre = []66# allrecall = []67# allfi = []68# for i in range(20):69# tp,fp,fn = random1()70# pre = float(tp)/(tp+fp)71# allpre.append(pre)72# recall = float(tp)/(tp+fn)73# allrecall.append(recall)74# allfi.append(2*recall*pre/(recall+pre))75# # print("%d,%d,%d"%(tp,fp,fn))76# print("the pre is %.3f, the recall is %.3f, the F-1 is %.3f"%(numpy.mean(allpre),numpy.mean(allrecall),numpy.mean(allfi))) 77def random1():78 count = 079 psc2codelist = [i for i in range(22)]80 print(psc2codelist)81 yeslist = [i for i in range(14)]82 nonlist = [i for i in range(14,22)]83 print(yeslist)84 print(nonlist)85 test_positive = random.sample(list(psc2codelist), k=11)86 test_negative = list(set(list(psc2codelist)).difference(set(test_positive)))87 # print(len(list(psc2codelist)))88 # print(len(test_positive))89 # print(len(test_negative))90 tp = 091 fp = 092 fn = 093 for item in test_positive:94 if item in yeslist:95 tp += 196 if item in nonlist:97 fp+=198 for item in test_negative:99 if item in yeslist:100 fn+=1101 return tp,fp,fn102allpre = []103allrecall = []104allfi = []105for i in range(20):106 tp,fp,fn = random1()107 pre = float(tp)/(tp+fp)108 allpre.append(pre)109 recall = float(tp)/(tp+fn)110 allrecall.append(recall)111 allfi.append(2*recall*pre/(recall+pre))112 # print("%d,%d,%d"%(tp,fp,fn))...
Check out the latest blogs from LambdaTest on this topic:
These days, development teams depend heavily on feedback from automated tests to evaluate the quality of the system they are working on.
I think that probably most development teams describe themselves as being “agile” and probably most development teams have standups, and meetings called retrospectives.There is also a lot of discussion about “agile”, much written about “agile”, and there are many presentations about “agile”. A question that is often asked is what comes after “agile”? Many testers work in “agile” teams so this question matters to us.
I routinely come across test strategy documents when working with customers. They are lengthy—100 pages or more—and packed with monotonous text that is routinely reused from one project to another. Yawn once more— the test halt and resume circumstances, the defect management procedure, entrance and exit criteria, unnecessary generic risks, and in fact, one often-used model replicates the requirements of textbook testing, from stress to systems integration.
To understand the agile testing mindset, we first need to determine what makes a team “agile.” To me, an agile team continually focuses on becoming self-organized and cross-functional to be able to complete any challenge they may face during a project.
When working on web automation with Selenium, I encountered scenarios where I needed to refresh pages from time to time. When does this happen? One scenario is that I needed to refresh the page to check that the data I expected to see was still available even after refreshing. Another possibility is to clear form data without going through each input individually.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!