Best Python code snippet using tempest_python
q_solution.py
Source: q_solution.py
1import numpy as np2import time3class AgentQ:4 def __init__(self, env, policy="epsilon_greedy", epsilon=0.05, alpha=0.1, gamma=1):5 self.env = env6 self.q_table = np.zeros(shape=(self.env.num_states, self.env.num_actions))7 self.policy = policy8 self.epsilon = epsilon9 self.alpha = alpha10 self.gamma = gamma11 def choose_action(self):12 if self.policy == "epsilon_greedy" and np.random.uniform(0, 1) < self.epsilon:13 action = np.random.randint(0, self.env.num_actions)14 else:15 state = self.env.agent_position16 q_values_of_state = self.q_table[state, :]17 # Choose randomly AMONG maximum Q-values18 max_q_value = np.max(q_values_of_state)19 maximum_q_values = np.nonzero(q_values_of_state == max_q_value)[0]20 action = np.random.choice(maximum_q_values)21 return action22 def learn(self, old_state, reward, new_state, action):23 max_q_value_in_new_state = np.max(self.q_table[new_state, :])24 current_q_value = self.q_table[old_state, action]25 self.q_table[old_state, action] = (1 - self.alpha) * current_q_value + self.alpha * (reward + self.gamma * max_q_value_in_new_state)26def q_learning(env, agent, num_episodes=500, max_steps_per_episode=1000, learn=True, seconds_between_each_step=0,27 show_grid=False, show_policy=False, show_q_values=False, show_softmax=False, show_learning_curve=False,28 fig_size=6):29 reward_per_episode = np.zeros(num_episodes)30 for episode in range(0, num_episodes):31 cumulative_reward = 032 step = 033 game_over = False34 while step < max_steps_per_episode and not game_over:35 time.sleep(seconds_between_each_step)36 if show_grid or show_learning_curve:37 env.visualize(show_grid=show_grid, show_policy=show_policy,38 show_learning_curve=show_learning_curve,39 show_q_values=show_q_values, clear_the_output=True,40 episode=episode, reward_per_episode=reward_per_episode,41 agent_q_table=agent.q_table, fig_size=fig_size)42 old_state = env.agent_position43 action = agent.choose_action()44 reward, new_state = env.make_step(action)45 if learn:46 agent.learn(old_state, reward, new_state, action)47 cumulative_reward += reward48 step += 149 # Check whether agent is at terminal state. If yes: end episode; reset agent.50 if env.is_terminal_state():51 time.sleep(seconds_between_each_step)52 if show_grid or show_learning_curve:53 env.visualize(show_grid=show_grid, show_policy=show_policy,54 show_learning_curve=show_learning_curve,55 show_q_values=show_q_values, clear_the_output=True,56 episode=episode, reward_per_episode=reward_per_episode,57 agent_q_table=agent.q_table, fig_size=fig_size)58 env.reset()59 game_over = True60 reward_per_episode[episode] = cumulative_reward...
game_log_viewer.py
Source: game_log_viewer.py
...38 for i in range(int(prisoner_plane[0][0])):39 game.place_piece( MiniShogi.Piece(pieceType, None, False, player) )40 window.draw_board(game)41 return game42def show_policy(window, policy, game, player):43 legal_moves = game.all_legal_moves(player)44 move_list = []45 for m in legal_moves:46 move_prob = policy[AlphaMiniShogiSearchTree.get_output_index( m, player )]47 move_list.append( (move_prob, m) )48 move_list.sort(reverse=True, key=lambda m:m[0])49 clear_moves = True50 for m in move_list:51 window.draw_move(m[1], clear_moves, m[0])52 print(m)53 clear_moves = False54def show_game_log(window, game_log, index):55 game_log_x = np.moveaxis(game_log['x'][index], -1, 0)56 print("Reward: ", game_log['y'][1][index])57 game = resort_game(window, game_log_x.tolist())58 # policy, reward = AlphaMiniShogiSearchTree(game, best_net_so_far).predict()59 # print("Model Reward: ", reward)60 # print("Player 0 moves:")61 # show_policy(window, game_log['y'][0][index], game, 0)62 # print("Player 0 net moves:")63 # show_policy(window, policy, game, 0)64 65 # print("Player 1 moves:")66 show_policy(window, game_log['y'][0][index], game, 1)67 # print("Player 1 net moves:")68 # show_policy(window, policy, game, 1)69 70 71best_net_so_far = AlphaGoZeroModel(72 input_board_size=MiniShogi.SIZE,73 number_of_input_planes=6*2*2+4*2,74 policy_output_size=MiniShogi.SIZE*(MiniShogi.SIZE+1)*(MiniShogi.SIZE*MiniShogi.SIZE+6),75 number_of_filters=64,76 number_of_residual_block=20,77 value_head_hidden_layer_size=6478 ).init_model()79#net_files = glob.glob(f'model_minishogi_*')80#if net_files:81# lastest_model_file = max(net_files)82# print(f"Lastest net: {lastest_model_file}")...
policy_show.py
Source: policy_show.py
...25| -s,--secured=MODE HTTPS mode "self" or "CA" [OPTIONAL].26| -v,--verbose verbose mode[OPTIONAL].27* outputs:28 * Status of the AG policies29.. function:: policy_show.show_policy(session)30 * Display the status of the AG policies.31 Example usage of the method::32 ret = policy_show.show_policy(session)33 print (ret)34 Details::35 policy_obj = policy()36 result = policy_obj.get(session)37 * inputs:38 :param session: session returned by login.39 * outputs:40 :rtype: dictionary of return status matching rest response41 *use cases*42 1. Retrieve the AG policy information.43"""44import sys45from pyfos import pyfos_auth46from pyfos import pyfos_util47from pyfos.utils import brcd_util48from pyfos.pyfos_brocade_access_gateway import policy49def show_policy(session):50 policy_obj = policy()51 # pyfos_util.response_print(policy_obj)52 result = policy_obj.get(session)53 return result54def main(argv):55 # Print arguments56 # print(sys.argv[1:])57 filters = []58 inputs = brcd_util.parse(argv, policy, filters)59 session = brcd_util.getsession(inputs)60 # pyfos_util.response_print(inputs['utilobject'].displaycustomcli())61 result = show_policy(inputs['session'])62 pyfos_util.response_print(result)63 pyfos_auth.logout(session)64if __name__ == "__main__":...
Check out the latest blogs from LambdaTest on this topic:
These days, development teams depend heavily on feedback from automated tests to evaluate the quality of the system they are working on.
I think that probably most development teams describe themselves as being “agile” and probably most development teams have standups, and meetings called retrospectives.There is also a lot of discussion about “agile”, much written about “agile”, and there are many presentations about “agile”. A question that is often asked is what comes after “agile”? Many testers work in “agile” teams so this question matters to us.
I routinely come across test strategy documents when working with customers. They are lengthy—100 pages or more—and packed with monotonous text that is routinely reused from one project to another. Yawn once more— the test halt and resume circumstances, the defect management procedure, entrance and exit criteria, unnecessary generic risks, and in fact, one often-used model replicates the requirements of textbook testing, from stress to systems integration.
To understand the agile testing mindset, we first need to determine what makes a team “agile.” To me, an agile team continually focuses on becoming self-organized and cross-functional to be able to complete any challenge they may face during a project.
When working on web automation with Selenium, I encountered scenarios where I needed to refresh pages from time to time. When does this happen? One scenario is that I needed to refresh the page to check that the data I expected to see was still available even after refreshing. Another possibility is to clear form data without going through each input individually.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!