Best Python code snippet using tempest_python
FERManager.py
Source:FERManager.py
...40 # Checks if the given net is subclass of CNNetwork41 assert issubclass(type(network), CNNetwork)42 self._nn_dict[network.get_name()] = network43 return44 def get_network_by_name(self, model_name=None):45 """46 This method loads the stored network by its name from the neural network list47 model_name: The name of the neural network to load48 INPUT:49 - model_name: The name of the network to load50 RETURN:51 - The specified network in the network list52 """53 assert model_name is not None54 return self._nn_dict[model_name]55 def code_to_emotion(self, code):56 """57 This method converts the emotion number to the appropriate emotion name58 INPUT:59 - code: The integer code of the emotion60 RETURN:61 - The string name of the respective emotion code, otherwise None62 """63 emotion_names = {0: "Angry/Disgust",64 1: "Fear",65 2: "Happy",66 3: "Sad",67 4: "Surprise",68 5: "Neutral"}69 if code >=0 and code <=5:70 return emotion_names.get(code)71 return None72 def start_training(self, network_type):73 """74 This method executes the training and validation process of the models75 INPUT:76 - network_type: The type of the network to train77 """78 self.enable_gpu_support() # Enables the GPU support when it's available79 if network_type not in self._nn_dict:80 raise ValueError("The given network could not be found in the neural network list!!!.")81 network = self.get_network_by_name(network_type)82 # Checks if the log folder for the VGG16 network exists83 if network.get_name() == 'vgg16':84 if os.path.exists(self._log_dir + "vgg16") == False:85 os.makedirs(self._log_dir + "/vgg16/train/")86 # Checks if the log folder for the Inception-v3 network exists87 if network.get_name() == 'inception-v3':88 if os.path.exists(self._log_dir + "inception_v3") == False:89 os.makedirs(self._log_dir + "/inception_v3/train/")90 print("Training of the "+network_type+" network starts...")91 network.build(self._num_emotions)92 network.training(augmentation=True, early_stopping=True, decay_rate=0.5) # Decays 50% the learning rate93 return94 def predict(self, dataset_path, network=None):95 """96 This method classifies an unknown image97 INPUT:98 - dataset_path: The path of the dataset99 - network: The network to predict100 """101 assert network is not None102 image_list = os.listdir(dataset_path)103 print("Prediction using the", network,"model...")104 vgg16 = None105 test_model_dir = ""106 inception_resnet_v2 = None107 # Checks for the VGG16 network108 if network == 'vgg16':109 vgg16 = self.get_network_by_name(network)110 test_model_dir = "./logs/vgg16/train/"111 # Checks for the Inception-v3 network112 elif network == 'inception-v3':113 inception_resnet_v2 = self.get_network_by_name(network)114 test_model_dir = "./logs/inception_v3/train/"115 else:116 print("No specified network for testing found!!!")117 return118 # Checks if the test directory contains a test checkpoint119 if os.listdir(test_model_dir):120 file = [file for file in os.listdir(test_model_dir)]121 test_model = load_model(test_model_dir + str(file[0]))122 else:123 print("No saved models available, prediction cannot proceed!!!")124 return125 emotion_predictions = []126 # Predicts the unknown images127 for img_file in image_list:128 # Reads every image from the folder, converts it to grayscale129 img_orig = cv2.imread(dataset_path + img_file)130 img_gray = cv2.imread(dataset_path + img_file, 0)131 predictions = []; calc_predictions = []; y_label = []132 if vgg16:133 predictions = vgg16.predict(img_gray, test_model)134 elif inception_resnet_v2:135 predictions = inception_resnet_v2.predict(img_gray, test_model)136 # print(predictions)137 print("Image file: ", img_file, ":")138 for code, percent in enumerate(predictions):139 emotion = self.code_to_emotion(code) # Converts the code to the emotion name140 # Checks for which emotion/percentage to print141 if code == 0: print(emotion + ":\t%1.2f%%" % (np.float(percent)))142 elif code == 1: print(emotion + ":\t\t\t%1.2f%%" % (np.float(percent)))143 elif code == 2: print(emotion + ":\t\t\t%1.2f%%" % (np.float(percent)))144 elif code == 3: print(emotion + ":\t\t\t%1.2f%%" % (np.float(percent)))145 elif code == 4: print(emotion + ":\t\t%1.2f%%" % (np.float(percent)))146 elif code == 5: print(emotion + ":\t\t%1.2f%%" % (np.float(percent)))147 else: print("Invalid Code!!!")148 calc_predictions.append(percent)149 highest = self.code_to_emotion(np.argmax(calc_predictions))150 print("Highest:", highest, "\n")151 emotion_predictions.append(highest)152 cv2.imshow(highest, img_orig)153 cv2.waitKey(0)154 cv2.destroyAllWindows()155 self.plot_statistics(emotion_predictions) # Plots the statistics of the prediction156 return157 # TODO: Implementation of the testing process158 def test(self, network=None):159 """160 This method uses the test set to evaluate the given network161 INPUT:162 - dataset_path: The path of the dataset163 - network: The network to predict164 """165 assert network is not None166 self.enable_gpu_support() # Enables the GPU support if it's available167 print("Testing using the", network, "model...")168 vgg16 = None169 test_model_dir = ""170 inception_resnet_v2 = None171 # Checks for the VGG16 network172 if network == 'vgg16':173 vgg16 = self.get_network_by_name(network)174 test_model_dir = "./logs/vgg16/train/"175 # Checks for the Inception-v3 network176 elif network == 'inception-v3':177 inception_resnet_v2 = self.get_network_by_name(network)178 test_model_dir = "./logs/inception_v3/train/"179 else:180 print("No specified network for testing found!!!")181 return182 # Checks if the test directory contains a test checkpoint183 if os.listdir(test_model_dir):184 file = [file for file in os.listdir(test_model_dir)]185 test_model = load_model(test_model_dir + str(file[0]))186 else:187 print("No saved models available, prediction cannot proceed!!!")188 return189 result = []190 if vgg16:191 result = vgg16.testing(self._num_emotions, test_model)...
test_getNetworkByName.py
Source:test_getNetworkByName.py
...20 raise21 else:22 try:23 for item in range(0, no_of_api_calls):24 response = self.get_network_by_name(25 ncm_url, params_from_inputfile.get_anchor(0)26 )27 logfile.log_debug(28 "Received Response Code: " + str(response.status_code)29 )30 logfile.log_debug("Received Response Text: " + str(response.text))31 # logfile.log_debug("Received Response Header SessionId: " + response.headers.get('SessionId'))32 self.get_network_by_name_assertion_check(33 logfile,34 response,35 params_from_inputfile.get_response_code(0, item),36 params_from_inputfile.get_response_text(0, item),37 )38 except HTTPError as http_err:39 logfile.log_debug(utils.printException())40 logfile.log_debug(41 "Error - HTTP error occurred: '{0}' ".format(http_err)42 )43 raise44 except Exception as err:45 logfile.log_debug(utils.printException())46 logfile.log_debug("Error - other error occurred: '{0}' ".format(err))47 raise48 @classmethod49 def get_network_by_name(self, ncm_url, anchor):50 headers = {"accept": "application/json"}51 response = requests.get(ncm_url + anchor, headers=headers)52 return response53 @classmethod54 def get_network_by_name_assertion_check(55 self, logfile, response, responseCode=None, responseText=None56 ):57 msgResCode = "Response Code does not match, expected: {0}, actual: {1}".format(58 responseCode, response.status_code59 )60 utils.logAssert(response.status_code == responseCode, msgResCode, logfile)61 if responseText:62 if type(responseText) == str:63 msgText = "Response Text does not contain expected string, expected: {0}, actual: {1}".format(...
loader.py
Source:loader.py
1import importlib2__all__ = [3 'get_network_by_name',4]5def get_network_by_name(name, input_shape):6 module = importlib.import_module('badukai.networks.' + name)7 constructor = getattr(module, 'layers')...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!