How to use report_test_error method in Slash

Best Python code snippet using slash

pytorch_logreg_example.py

Source:pytorch_logreg_example.py Github

copy

Full Screen

...68 ax.set_xlabel('x');69 ax.set_ylabel('y');70 ax.set_zlabel('z')71 plt.show()72def report_test_error():73 correct = 074 total = 075 with torch.no_grad():76 for data in test_loader:77 samples, labels = data78 outputs = net(samples)79 _, predicted = torch.max(outputs, 1)80 total += labels.size(0)81 correct += (predicted == labels).sum().item()82 print('Accuracy of the network on the 10000 test images: %d %%' % (83 100 * correct / total))84if __name__ == '__main__':85 ################################################################################86 # Build or load data87 ################################################################################88 input_dim = 389 output_dim = 290 X_train, Y_train = build_gaussian_data(1000, 200)91 X_test, Y_test = build_gaussian_data(2000, 2000)92 # specify training and testing datasets93 train_dataset = DataLogReg(X_train, Y_train)94 test_dataset = DataLogReg(X_test, Y_test)95 train_dataset.plot()96 ################################################################################97 # Initialize network class98 ################################################################################99 net = LogRegNet(input_dim, output_dim)100 print(net)101 # inspect network class102 params = list(net.parameters())103 print('Num of params matrices to flag_train:', len(params))104 print(params[0].size())105 sample_input = torch.randn(1, input_dim) # first dimension is the batch dimension when feeding to nn layers106 features_out = net(sample_input) # expect size batch_size x 2107 print(features_out.size())108 print(features_out)109 ################################################################################110 # Choose loss111 ################################################################################112 criterion = nn.NLLLoss()113 output = net(sample_input)114 target = torch.tensor([1]) # a dummy target class in [0,1], for example115 loss = criterion(output, target)116 print(loss)117 print(loss.grad_fn) # MSELoss118 print(loss.grad_fn.next_functions[0][0]) # Linear119 print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU120 ################################################################################121 # Optimization122 ################################################################################123 # Training loop hyperparameters124 batch_size = 20125 epochs = 10126 learning_rate = 0.001127 # Choose an optimizer or create one128 import torch.optim as optim129 optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)130 # Setup data batching131 nwork = 0132 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=nwork)133 test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=nwork)134 # Set device135 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")136 net.to(device)137 ########inputs, labels = data[0].to(device), data[1].to(device) # what to send to deive? the Dataset object?138 print(device)139 for epoch in range(epochs): # loop over the dataset multiple times140 print(epoch)141 running_loss = 0.0142 for i, data in enumerate(train_loader, 0):143 inputs, labels = data # get the inputs; data is a list of [inputs, labels]144 # zero the parameter gradients145 optimizer.zero_grad()146 # forward + backward + optimize147 outputs = net(inputs)148 loss = criterion(outputs, labels)149 loss.backward()150 optimizer.step()151 # print statistics152 running_loss += loss.item()153 if i % 10 == 9: # print every 9154 print('Epoch: %d, batch: %5d, loss: %.3f' %155 (epoch, i + 1, running_loss))156 report_test_error()157 running_loss = 0.0158 print('Finished Training')159 ################################################################################160 # Save model161 ################################################################################162 import os163 model_path = DIR_MODELS + os.sep + 'net_logreg.pth'164 torch.save(net.state_dict(), model_path)165 ################################################################################166 # Load model167 ################################################################################168 dataiter = iter(test_loader)169 samples, labels = dataiter.next()170 net = LogRegNet(input_dim, output_dim)171 net.load_state_dict(torch.load(model_path))172 outputs = net(samples)173 _, predicted = torch.max(outputs, 1)174 print('Predicted: ', ' '.join('%5s' % predicted[j] for j in range(4)))175 print('True: ', ' '.join('%5s' % labels[j] for j in range(4)))...

Full Screen

Full Screen

reporter_interface.py

Source:reporter_interface.py Github

copy

Full Screen

...26 self.report_test_success(test, result)27 elif result.is_skip():28 self.report_test_skip(test, result)29 elif result.is_error():30 self.report_test_error(test, result)31 elif result.is_interrupted():32 self.report_test_interrupted(test, result)33 else:34 assert result.is_failure()35 self.report_test_failure(test, result)36 def report_test_success(self, test, result):37 pass38 def report_test_skip(self, test, result):39 pass40 def report_test_error(self, test, result):41 pass42 def report_test_failure(self, test, result):43 pass44 def report_test_interrupted(self, test, result):45 pass46 def report_test_error_added(self, test, error):47 pass48 def report_test_failure_added(self, test, error):49 pass50 def report_test_skip_added(self, test, reason):51 pass52 def report_fancy_message(self, headline, message):53 pass54 def report_message(self, message):...

Full Screen

Full Screen

test_accuracy.py

Source:test_accuracy.py Github

copy

Full Screen

2import numpy as np 3import sample 4import sys5import animation6def report_test_error(savefile_name, action_class, test_inds, pre_step, prune_viewpoints):7 summ = 08 for ind in test_inds:9 ind = int(ind)10 print("Checking error for test_ind ", ind)11 action = sample.extract_action('data/joint_positions', action_class, ind, prune_viewpoints)12 initial_input = sample.generate_initial_input(action)13 pred_result = sample.sample('data/', initial_input, savefile_name, pre_step)14 animation.animate_action(pred_result, action_class, ind,'Prediction of %s'%action_class)15 summ += sample.mean_squared_error(pred_result, action)16 return summ / len(test_inds)17if __name__ == '__main__':18 savefile_name = sys.argv[1]19 action_class = sys.argv[2]20 test_inds = sys.argv[3]21 pre_step = 1022 prune_viewpoints = False23 err = report_test_error(savefile_name, action_class, test_inds.split(','), pre_step, prune_viewpoints)...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Slash automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful