Best Python code snippet using slash
SemanticSegmentation.py
Source:SemanticSegmentation.py
1"""2Performs a semantic segmentation task with 19 classes taken from the Cityscapes dataset.3This method creates a function given a model. The function can then be used on data to perform semantic segmentation. 4"""5import torch.nn as nn6import torch7import numpy as np8colors_data = [ [0, 0, 0],9 [128, 64,128],10 [244, 35,232],11 [70, 70, 70],12 [102,102,156],13 [190,153,153],14 [153,153,153],15 [250,170, 30],16 [250,170, 30],17 [107,142, 35],18 [152,251,152],19 [ 70,130,180],20 [220, 20, 60],21 [255, 0, 0],22 [ 0, 0,142],23 [ 0, 0, 70],24 [ 0, 0, 70],25 [ 0, 80,100],26 [ 0, 0,230],27 [119, 11, 32] ]28def convert_to_RGB(y):29 """30 Identifies the class by taking the argmax across values.31 Replaces the class id by the corresponding color.32 33 Returns 34 the identified classes `idtfd` with each pixel assigned with a class i.e. shape of (N, C, H, W) with C the class id,35 the colored images `imgs` with each pixel assigned a color corresponding to the class i.e. shape (N, 3, H, W)36 """37 # n_classes = 1938 n_classes = y.shape[1]39 40 # Create color attribution for coloring41 colors = np.array(colors_data[:n_classes])42 print(f"Using {len(colors)} classes.")43 44 # Identify the class45 idtfd = y.argmax(dim=1).numpy()46 # Create the colored images47 imgs = colors[idtfd]48 imgs = imgs.transpose(0, 3, 1, 2)49 50 return idtfd, imgs51def get_semantic_RGB(model):52 """53 Creates a semantic segmentation task for a single model. 54 Returns a fonction that can be used on a list of RGB (3 channels) images.55 56 Note: the code makes use of the model as an implementation of the `torch.nn.Module`.57 58 semantic_task = get_semantic(UNet)59 preds = semantic_task(imgs)60 preds, colored_preds = semantic_task(imgs, get_colored=True)61 preds, classified_preds = semantic_task(imgs, get_classification=True)62 Parameters:63 model: torch.Tensor64 The model to use for the segmentation65 """66 67 if not isinstance(model, nn.Module):68 raise AttributeError("The passed model should be an implementation of the `torch.nn.Module` class.")69 70 def semantic_segmentation_RGB(imgs, get_colored=False, get_classification=False):71 """72 Performs the semantic segmentation task with the input model.73 Note: the code makes use of the model as an implementation of the `torch.nn.Module`.74 75 semantic_task = get_semantic(UNet)76 preds = semantic_task(imgs)77 preds, colored_preds = semantic_task(imgs, get_colored=True)78 preds, classified_preds = semantic_task(imgs, get_classification=True)79 80 Parameters: 81 imgs: torch.Tensor82 The list of RGB images to segment.83 get_colored: bool (default=False)84 Parameter indicating wether to return the colored images as well. One color per class.85 get_classification: bool (default=False)86 Parameter indicating wether to return the classified pixels. Most confident class per pixel.87 88 """89 if not isinstance(imgs, torch.Tensor):90 raise AttributeError("The input for the segmentation task should be a tensor of images.")91 if not imgs.shape[1] == 3 or len(imgs.shape)!=4:92 raise AttributeError("The input should have the following dimensons (N, C, H, W), respectively number of images, channels, height and width.")93 94 # Setting the model in eval mode95 model.eval()96 97 # running the images through the model98 results = model(imgs)99 100 # Identifying class and coloring.101 idtfd, colored = convert_to_RGB(results)102 103 output = [results]104 105 if get_colored:106 output.append(colored)107 if get_classification:108 output.append(idtfd)109 if len(output)==1:110 return output[0]111 return output112 ...
cfparser.py
Source:cfparser.py
...39 for s in sample_test_o:40 sto.append(s.get_text().replace('Output',''))41 tab = ' '42 paged = '\n'43 paged += get_colored(tab+title, "blue")+"\n"44 paged += get_colored(tab+"Time: ",'blue')+get_colored(time_limit, color='magenta')+"\n"45 paged += get_colored(tab+"Memory: ",'blue')+get_colored(mem_limit, color='magenta')+"\n\n\n"46 paged += get_colored(tab+"Problem Statement:\n", 'blue')+"\n"47 for s in state:48 paged += get_colored(tab+"".join(textwrap.wrap(s, 150))+"\n")+"\n"49 paged += get_colored(tab+"Input:\n", 'blue')+"\n"50 for s in input_s:51 paged += get_colored(tab+"".join(textwrap.wrap(s, 150))+"\n")+"\n"52 paged += get_colored(tab+"Output:\n", 'blue')+"\n"53 for s in output_s:54 paged += get_colored(tab+"\n\t".join(textwrap.wrap(s, 150))+"\n")+"\n"55 for i in range(len(sti)):56 paged += get_colored(tab+"Sample Input "+str(i)+":", 'blue')+"\n"57 paged += get_colored(tab+sti[i].replace('\n', '\n\t '), 'cyan')+"\n"58 paged += get_colored(tab+"Sample Output "+str(i)+":", 'blue')+"\n"59 paged += get_colored(tab+sto[i].replace('\n', '\n\t '), 'green')+"\n"60 # print(paged)61 print(LatexNodes2Text().latex_to_text(paged))62 # pydoc.pager(paged)...
color_string.py
Source:color_string.py
1import colorama2import functools3class ColorStringBase(object):4 def get_colored(self):5 raise NotImplementedError() # pragma: no cover6 def __repr__(self):7 return repr(str(self))8 def __add__(self, other):9 return ColorCompoundString(self, other)10 def __radd__(self, other):11 return ColorCompoundString(other, self)12class ColorString(ColorStringBase):13 def __init__(self, string, color):14 super(ColorString, self).__init__()15 self._string = string16 self._color = color17 def __len__(self):18 return len(self._string)19 def ljust(self, *args):20 return ColorString(self._string.ljust(*args), self._color)21 @classmethod22 def get_formatter(cls, color):23 return functools.partial(cls, color=color)24 def __mod__(self, values):25 return ColorString(self._string % values, self._color)26 def __str__(self):27 return str(self._string)28 def get_colored(self):29 return "{}{}{}".format(getattr(colorama.Fore, self._color.upper()), self._string, colorama.Fore.RESET) # pylint: disable=no-member30class ColorCompoundString(ColorStringBase):31 def __init__(self, *strings):32 super(ColorCompoundString, self).__init__()33 self._strings = strings34 def __str__(self):35 return ''.join(str(x) for x in self._strings)36 def __len__(self):37 return sum(len(s) for s in self._strings)38 def ljust(self):39 raise NotImplementedError() # pragma: no cover40 def get_colored(self):...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!