How to use or_ method in Selene

Best Python code snippet using selene_python

rule.py

Source:rule.py Github

copy

Full Screen

...6from Lab2.constants import *7SIMPLE_CITIES = [city.lower() for city in city_test if city.find('-') == -1 and city.find(' ') == -1]8COMPLEX_CITIES = [city.lower() for city in city_test if city.find('-') != -1 or city.find(' ') != -1]9Address = fact('Address', get_address_schema())10CITY_NAME = or_(rule(dictionary(SIMPLE_CITIES)), morph_pipeline(COMPLEX_CITIES)).interpretation(Address.city)11SIMPLE = and_(true(), or_(get_noun_gram(), get_adjective_gram()))12COMPLEX = or_(rule(SIMPLE, is_dash().optional(), SIMPLE),13 rule(true(), is_dash().optional(), caseless('на'), is_dash().optional(), true()))14PERSON_RULE = or_(rule(SIMPLE), COMPLEX)15MAYBE_CITY_NAME = or_(PERSON_RULE, rule(PERSON_RULE, '-', get_int_type())).interpretation(Address.city)16CITY_WORDS = or_(rule(normalized('город')), rule(caseless('г'), is_dot().optional())).interpretation(17 Address.city_type.const('город'))18CITY = or_(rule(CITY_NAME), rule(CITY_WORDS, CITY_NAME), rule(CITY_NAME, CITY_WORDS)).interpretation(Address)19SHORT_MODIFIER_WORDS = rule(in_caseless({*ex_word}), is_dash().optional())20MODIFIER_WORDS = or_(SHORT_MODIFIER_WORDS)21LET_WORDS = or_(rule(caseless('лет')), rule(is_dash().optional(), caseless('летия')))22LET = rule(get_int_type(), LET_WORDS)23MONTH_WORDS = dictionary({*months})24DAY = and_(get_int_type(), gte(1), lte(31))25YEAR = and_(get_int_type(), gte(1), lte(2100))26YEAR_WORDS = normalized('год')27DATE = or_(rule(DAY, MONTH_WORDS), rule(get_adjective_gram(), normalized('дней')), rule(YEAR, YEAR_WORDS))28TITLE_RULE = and_(29 true(),30 not_(get_int_type()),31 not_(get_intj_type()),32 not_(length_eq(3)),33 not_(normalized('проезд')),34 not_(normalized('видный')),35 not_(normalized('крылова')),36 not_(normalized('питер'))37)38PART = and_(TITLE_RULE, or_(gram('Name'), gram('Surn')))39MAYBE_FIO = or_(rule(gram('Surn')), rule(gram('Name')), rule(TITLE_RULE, PART), rule(PART, TITLE_RULE))40POSITION_WORDS = or_(rule(dictionary(roles_test)))41MAYBE_PERSON = or_(MAYBE_FIO, rule(POSITION_WORDS, MAYBE_FIO))42IMENI_WORDS = or_(rule(caseless('им'), is_dot().optional()), rule(caseless('имени')))43IMENI = rule(IMENI_WORDS.optional(), MAYBE_PERSON)44SIMPLE = and_(or_(get_adjective_gram(), and_(get_noun_gram(), get_genitive())), TITLE_RULE)45COMPLEX = or_(rule(and_(get_adjective_gram(), TITLE_RULE), get_noun_gram()),46 rule(TITLE_RULE, is_dash().optional(), TITLE_RULE))47EXCEPTION = dictionary({'арбат', 'варварка'})48MAYBE_NAME = or_(rule(SIMPLE), rule(EXCEPTION))49MAIL_STREET = rule(get_int_type(), get_adjective_gram(), get_noun_gram())50LET_NAME = or_(MAYBE_NAME, LET, DATE, IMENI)51MODIFIER_NAME = rule(MODIFIER_WORDS, get_noun_gram())52PERSON_RULE = or_(LET_NAME, MODIFIER_NAME, MAIL_STREET)53ADDR_NAME = PERSON_RULE54SPB_SHORT = rule(normalized('питер')).interpretation(Address.city.const('санкт-петербург'))55SBP_NAME = LET_NAME.interpretation(Address.street)56SPB_STREET = rule(SPB_SHORT, SBP_NAME).interpretation(Address)57STREET_NAME = ADDR_NAME.interpretation(Address.street)58STREET_WORDS = or_(rule(normalized('улица')), rule(normalized('улица'), normalized('значит')),59 rule(caseless('ул'), is_dot().optional())60 ).interpretation(Address.street_type.const('улица'))61STREET = or_(rule(STREET_WORDS, STREET_NAME), rule(STREET_NAME, STREET_WORDS)).interpretation(Address)62BOULEVARD_WORDS = or_(rule(caseless('б'), '-', caseless('р')),63 rule(caseless('бул'), is_dot().optional())).interpretation(Address.street_type.const('бульвар'))64BOULEVARD_NAME = ADDR_NAME.interpretation(Address.street)65BOULEVARD = or_(rule(BOULEVARD_WORDS, BOULEVARD_NAME), rule(BOULEVARD_NAME, BOULEVARD_WORDS)).interpretation(Address)66HIGHWAY_WORDS = or_(rule(caseless('ш'), is_dot()), rule(normalized('шоссе'))).interpretation(67 Address.street_type.const('шоссе'))68HIGHWAY_NAME = ADDR_NAME.interpretation(Address.street)69HIGHWAY = or_(rule(HIGHWAY_WORDS, HIGHWAY_NAME), rule(HIGHWAY_NAME, HIGHWAY_WORDS)).interpretation(Address)70TRACT_WORDS = or_(rule(caseless('тр'), is_dot()), rule(normalized('тракт'))).interpretation(71 Address.street_type.const('тракт'))72TRACT_NAME = ADDR_NAME.interpretation(Address.street)73TRACT = or_(rule(TRACT_WORDS, TRACT_NAME), rule(TRACT_NAME, TRACT_WORDS)).interpretation(Address)74GAI_WORDS = rule(normalized('гай'))75GAI_NAME = ADDR_NAME76GAI = or_(rule(GAI_WORDS, GAI_NAME), rule(GAI_NAME, GAI_WORDS)).interpretation(Address.street)77VAL_WORDS = rule(normalized('вал'))78VAL_NAME = ADDR_NAME79VAL = or_(rule(VAL_WORDS, VAL_NAME), rule(VAL_NAME, VAL_WORDS)).interpretation(Address.street)80ALLEY_WORDS = rule(normalized('аллеи')).interpretation(Address.street_type.const('аллеи'))81ALLEY_NAME = ADDR_NAME.interpretation(Address.street)82ALLEY = rule(ALLEY_NAME, ALLEY_WORDS).interpretation(Address)83AVENUE_WORDS = or_(rule(in_caseless({'пр', 'просп'}), is_dot().optional()),84 rule(caseless('пр'), '-', in_caseless({'кт', 'т'}), is_dot().optional()),85 rule(normalized('проспект'))).interpretation(Address.street_type.const('проспект'))86AVENUE_NAME = ADDR_NAME.interpretation(Address.street)87AVENUE = or_(rule(AVENUE_WORDS, AVENUE_NAME), rule(AVENUE_NAME, AVENUE_WORDS)).interpretation(Address)88DISTRICT_WORDS = or_(rule(in_caseless({'мк', 'мкр'}), is_dot().optional()),89 rule(caseless('мк'), '-', in_caseless({'рн', 'н'}), is_dot().optional()),90 ).interpretation(Address.street_type.const('микрорайон'))91DISTRICT_NAME = ADDR_NAME.interpretation(Address.street)92DISTRICT = or_(rule(DISTRICT_WORDS, DISTRICT_NAME), rule(DISTRICT_NAME, DISTRICT_WORDS)).interpretation(Address)93DRIVEWAY_WORDS = or_(rule(normalized('проезд')), rule(caseless('пр'), is_dot().optional())).interpretation(94 Address.street_type.const('проезд'))95DRIVEWAY_NAME = ADDR_NAME.interpretation(Address.street)96DRIVEWAY = or_(rule(DRIVEWAY_NAME, DRIVEWAY_WORDS), rule(DRIVEWAY_WORDS, DRIVEWAY_NAME)).interpretation(Address)97ALLEYWAY_WORDS = or_(rule(caseless('п'), is_dot()), rule(caseless('пер'), is_dot().optional()), ).interpretation(98 Address.street_type.const('переулок'))99ALLEYWAY_NAME = ADDR_NAME.interpretation(Address.street)100ALLEYWAY = or_(rule(ALLEYWAY_WORDS, ALLEYWAY_NAME), rule(ALLEYWAY_NAME, ALLEYWAY_WORDS)).interpretation(Address)101SQUARE_WORDS = or_(rule(caseless('пл'), is_dot().optional())).interpretation(Address.street_type.const('площадь'))102SQUARE_NAME = ADDR_NAME.interpretation(Address.street)103SQUARE = or_(rule(SQUARE_WORDS, SQUARE_NAME), rule(SQUARE_NAME, SQUARE_WORDS)).interpretation(Address)104EMBANKMENT_WORDS = or_(rule(caseless('наб'), is_dot().optional())).interpretation(105 Address.street_type.const('набережная'))106EMBANKMENT_NAME = ADDR_NAME.interpretation(Address.street)107EMBANKMENT = or_(rule(EMBANKMENT_WORDS, EMBANKMENT_NAME), rule(EMBANKMENT_NAME, EMBANKMENT_WORDS)).interpretation(108 Address)109LETTER = in_(ru)110QUOTE = in_(QUOTES)111LETTER = or_(rule(LETTER), rule(QUOTE, LETTER, QUOTE))112SEP = in_(r' /\-')113VALUE = or_(rule(get_int_type(), SEP, LETTER), rule(get_int_type(), LETTER),114 rule(get_int_type(), is_whitespace(), LETTER), rule(get_int_type()),115 rule(get_int_type(), SEP, get_int_type()))116ADDR_VALUE = rule(eq('№').optional(), VALUE)117HOUSE_WORDS = or_(rule(normalized('номер')), rule(normalized('дом')), rule(caseless('д'), is_dot())).interpretation(118 Address.house_type.const('дом'))119HOUSE_VALUE = ADDR_VALUE.interpretation(Address.house)120HOUSE = rule(HOUSE_WORDS, HOUSE_VALUE).interpretation(Address)121APARTMENT_WORDS = or_(rule(in_caseless('кв'), is_dot().optional()), rule(normalized('квартира'))).interpretation(122 Address.corpus_type.const('корпус'))123APARTMENT_VALUE = ADDR_VALUE.interpretation(Address.apartment)124APARTMENT = or_(rule(APARTMENT_WORDS, APARTMENT_VALUE), rule(APARTMENT_VALUE, APARTMENT_WORDS)).interpretation(Address)125corpus_words_const = {'к', 'корп', 'кор', 'корпус'}126CORPUS_WORDS = or_(rule(in_caseless(corpus_words_const), is_dot().optional())).interpretation(127 Address.corpus_type.const('корпус'))128CORPUS_VALUE = ADDR_VALUE.interpretation(Address.corpus)129CORPUS = rule(CORPUS_WORDS, CORPUS_VALUE).interpretation(Address)130building_words_const = {'ст', 'строение'}131BUILDING_WORDS = or_(132 rule(in_caseless(building_words_const), is_dot().optional())).interpretation(133 Address.building_type.const('строение'))134BUILDING_VALUE = ADDR_VALUE.interpretation(Address.building)135BUILDING = rule(BUILDING_WORDS, BUILDING_VALUE).interpretation(Address)136STREET_HOUSE_CORPUS = rule(137 CITY.optional(),138 or_(HIGHWAY, STREET, STREET_NAME, AVENUE,139 DRIVEWAY, TRACT, SQUARE, EMBANKMENT, ALLEY,140 BOULEVARD, DISTRICT, GAI, VAL, ALLEYWAY),141 HOUSE_WORDS.optional(),142 HOUSE_VALUE,143 CORPUS_WORDS,144 CORPUS_VALUE145).interpretation(Address)146HOUSE_CORPUS = rule(HOUSE_VALUE, CORPUS_WORDS, CORPUS_VALUE).interpretation(Address)147HOUSE_BUILDING = rule(148 CITY.optional(),149 or_(HIGHWAY, STREET, STREET_NAME, AVENUE,150 DRIVEWAY, TRACT, SQUARE, EMBANKMENT, ALLEY,151 BOULEVARD, DISTRICT, GAI, VAL, ALLEYWAY),152 HOUSE_WORDS.optional(),153 HOUSE_VALUE,154 BUILDING_WORDS,155 BUILDING_VALUE156).interpretation(Address)157HOUSE_STREET = rule(158 CITY.optional(),159 or_(HIGHWAY, STREET, STREET_NAME, AVENUE,160 DRIVEWAY, TRACT, SQUARE, EMBANKMENT, ALLEY,161 BOULEVARD, DISTRICT, GAI, VAL, ALLEYWAY),162 HOUSE_WORDS.optional(),163 HOUSE_VALUE164).interpretation(Address)165VALUE_HOUSE = rule(get_int_type()).interpretation(Address.house)166NUMBER_HOUSE = rule(rule(normalized('номер')), VALUE_HOUSE).interpretation(Address)167TRIPLE_HOUSE = rule(rule(normalized('дом')), VALUE_HOUSE).interpretation(Address)168DOM_APARTMENT = rule(HOUSE_VALUE, APARTMENT_VALUE).interpretation(Address)169ADDRESS_RULE = or_(170 SPB_STREET, CITY, NUMBER_HOUSE, HOUSE_CORPUS, HOUSE_BUILDING, TRIPLE_HOUSE,171 HOUSE_STREET, DOM_APARTMENT, STREET, DRIVEWAY, ALLEYWAY, SQUARE, HIGHWAY, TRACT, EMBANKMENT, VAL, GAI, ALLEY, HOUSE,172 STREET_HOUSE_CORPUS, HOUSE_BUILDING, BOULEVARD, DISTRICT, CORPUS, APARTMENT, BUILDING173).interpretation(Address)174Name = fact('Name', name)175name = and_(gram('Name'), not_(get_abbr_gram()), get_len())176patronymic = and_(gram('Patr'), not_(get_abbr_gram()), get_len())177surname = and_(gram('Surn'), get_len())178FIRST = name.interpretation(Name.first)179FIRST_ABBR = and_(get_abbr_gram(), true()).interpretation(Name.first)180LAST = surname.interpretation(Name.last)181MAYBE_LAST = and_(true(), not_(get_abbr_gram()), get_len()).interpretation(Name.last)182MIDDLE = patronymic.interpretation(Name.middle)183MIDDLE_SHORT = and_(get_abbr_gram(), true()).interpretation(Name.middle)184FIRST_LAST = rule(FIRST, MAYBE_LAST)185LAST_FIRST = rule(MAYBE_LAST, FIRST)186LAST_ABBR_FIRST = rule(MAYBE_LAST, FIRST_ABBR, is_dot())187LAST_ABBR_FIRST_MIDDLE = rule(MAYBE_LAST, FIRST_ABBR, is_dot(), MIDDLE_SHORT, is_dot())188FIRST_MIDDLE = rule(FIRST, MIDDLE)189MIDDLE_FIRST = rule(MIDDLE, FIRST)190FIRST_MIDDLE_LAST = rule(FIRST, MIDDLE, LAST)191LAST_FIRST_MIDDLE = rule(LAST, FIRST, MIDDLE)192SHORT_FIRST_MIDDLE_LAST = rule(FIRST_ABBR, is_dot(), MIDDLE_SHORT, is_dot(), MAYBE_LAST)193SHORT_FIRST_LAST = rule(FIRST_ABBR, is_dot(), MAYBE_LAST)194PERSON_RULE = or_(LAST_FIRST_MIDDLE, FIRST_MIDDLE_LAST, FIRST_MIDDLE, FIRST_LAST, LAST_FIRST, SHORT_FIRST_LAST,...

Full Screen

Full Screen

search.py

Source:search.py Github

copy

Full Screen

...74 Job.job_id)75 a["results"] += games_and["results"] + companies_and["results"] + jobs_and["results"]76 # contains OR77 print("PARTIAL OR")78 games_queries_or = OrderedDict([("name", or_(* [Game.name.ilike("%" + x + "%") for x in terms])),79 ("deck", or_(* [Game.deck.ilike("%" + x + "%") for x in terms])),80 ("description", or_(* [Game.description.ilike("%" + x + "%") for x in terms]))])81 companies_queries_or = OrderedDict([("name", or_(* [Company.name.ilike("%" + x + "%") for x in terms])),82 ("deck", or_(* [Company.deck.ilike("%" + x + "%") for x in terms])),83 ("description", or_(* [Company.description.ilike("%" + x + "%") for x in terms]))])84 jobs_queries_or = OrderedDict([("job_title", or_(* [Job.job_title.ilike("%" + x + "%") for x in terms])),85 ("description", or_(* [Job.description.ilike("%" + x + "%") for x in terms])),86 ("location", or_(* [Job.location.ilike("%" + x + "%") for x in terms])),87 ("company_name", or_(* [Job.company_name.ilike("%" + x + "%") for x in terms]))])88 games_or = search_models(a, request.args["s"], Game, "games", "partial match OR", "OR", games_queries_or, Game.name,89 Game.game_id)90 companies_or = search_models(a, request.args["s"], Company, "companies", "partial match OR", "OR", companies_queries_or,91 Company.name, Company.company_id)92 jobs_or = search_models(a, request.args["s"], Job, "jobs", "partial match OR", "OR",93 jobs_queries_or, Job.job_title, Job.job_id)94 a["results"] += games_or["results"] + companies_or["results"] + jobs_or["results"]95 return a96# search_string, filter, entities97def search_models(temp_result, search_string, model, type, match_type, result_type, queries, *entities):98 result = {}99 result["results"] = []100 terms = search_string.rsplit(" ")101 for q in queries:...

Full Screen

Full Screen

results.py

Source:results.py Github

copy

Full Screen

...33avg std min max3496706.3 2651.17 80156 9806235100318 1131.11 91302 10094036100649 1752.85 87910 10176237and_(or_(and_(IN9, or_(IN5, IN3)), and_(or_(and_(or_(and_(IN13, IN12), not_(not_(IN8))), IN16), and_(or_(and_(not_(not_(IN8)), or_(IN2, IN4)), or_(and_(and_(or_(and_(IN7, or_(IN3, IN3)), IN10), or_(and_(and_(not_(not_(IN8)), and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), not_(IN8))), IN10), or_(IN5, IN4))), IN16), IN2)), IN16), and_(or_(and_(not_(not_(IN1)), or_(IN2, and_(IN7, or_(or_(IN3, IN5), or_(and_(IN2, IN4), IN10))))), IN15), or_(IN12, and_(IN6, IN11))))), or_(IN2, and_(IN7, or_(or_(IN3, IN5), or_(and_(IN2, IN4), IN10)))))), or_(and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), or_(and_(IN6, IN8), IN10))), IN10), or_(IN5, IN4)), and_(or_(and_(or_(IN4, not_(not_(IN8))), IN16), and_(or_(and_(not_(not_(IN8)), or_(IN7, IN4)), IN15), or_(not_(not_(and_(IN13, IN3))), and_(IN6, IN11)))), IN12)))), or_(and_(or_(or_(and_(IN2, IN4), IN10), IN15), or_(not_(not_(and_(IN13, IN12))), and_(IN6, IN11))), or_(and_(and_(or_(and_(IN7, or_(IN3, IN3)), IN10), or_(and_(and_(or_(and_(IN7, or_(IN3, IN3)), IN13), and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), not_(IN8))), IN10), or_(and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), not_(IN8))), IN10), or_(IN5, IN4)), IN4))), IN16), IN2)), IN16), and_(or_(and_(not_(not_(IN1)), or_(IN2, and_(IN7, or_(or_(IN3, IN5), or_(and_(IN2, IN4), IN10))))), IN15), or_(not_(not_(IN8)), and_(IN6, IN11))))))3898445.8 491.316 95088 988623992616.2 2998.54 74400 938804096612.7 3473.9 73164 984344196469.9 1417.88 87818 976344298469.3 2206.32 87930 996764397442.4 2274.31 83064 98402...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Selene automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful