Best Python code snippet using selene_python
rule.py
Source: rule.py
...6from Lab2.constants import *7SIMPLE_CITIES = [city.lower() for city in city_test if city.find('-') == -1 and city.find(' ') == -1]8COMPLEX_CITIES = [city.lower() for city in city_test if city.find('-') != -1 or city.find(' ') != -1]9Address = fact('Address', get_address_schema())10CITY_NAME = or_(rule(dictionary(SIMPLE_CITIES)), morph_pipeline(COMPLEX_CITIES)).interpretation(Address.city)11SIMPLE = and_(true(), or_(get_noun_gram(), get_adjective_gram()))12COMPLEX = or_(rule(SIMPLE, is_dash().optional(), SIMPLE),13 rule(true(), is_dash().optional(), caseless('รยฝรยฐ'), is_dash().optional(), true()))14PERSON_RULE = or_(rule(SIMPLE), COMPLEX)15MAYBE_CITY_NAME = or_(PERSON_RULE, rule(PERSON_RULE, '-', get_int_type())).interpretation(Address.city)16CITY_WORDS = or_(rule(normalized('รยณรยพรยรยพรยด')), rule(caseless('รยณ'), is_dot().optional())).interpretation(17 Address.city_type.const('รยณรยพรยรยพรยด'))18CITY = or_(rule(CITY_NAME), rule(CITY_WORDS, CITY_NAME), rule(CITY_NAME, CITY_WORDS)).interpretation(Address)19SHORT_MODIFIER_WORDS = rule(in_caseless({*ex_word}), is_dash().optional())20MODIFIER_WORDS = or_(SHORT_MODIFIER_WORDS)21LET_WORDS = or_(rule(caseless('รยปรยตรย')), rule(is_dash().optional(), caseless('รยปรยตรยรยธรย')))22LET = rule(get_int_type(), LET_WORDS)23MONTH_WORDS = dictionary({*months})24DAY = and_(get_int_type(), gte(1), lte(31))25YEAR = and_(get_int_type(), gte(1), lte(2100))26YEAR_WORDS = normalized('รยณรยพรยด')27DATE = or_(rule(DAY, MONTH_WORDS), rule(get_adjective_gram(), normalized('รยดรยฝรยตรยน')), rule(YEAR, YEAR_WORDS))28TITLE_RULE = and_(29 true(),30 not_(get_int_type()),31 not_(get_intj_type()),32 not_(length_eq(3)),33 not_(normalized('รยฟรยรยพรยตรยทรยด')),34 not_(normalized('รยฒรยธรยดรยฝรยรยน')),35 not_(normalized('รยบรยรยรยปรยพรยฒรยฐ')),36 not_(normalized('รยฟรยธรยรยตรย'))37)38PART = and_(TITLE_RULE, or_(gram('Name'), gram('Surn')))39MAYBE_FIO = or_(rule(gram('Surn')), rule(gram('Name')), rule(TITLE_RULE, PART), rule(PART, TITLE_RULE))40POSITION_WORDS = or_(rule(dictionary(roles_test)))41MAYBE_PERSON = or_(MAYBE_FIO, rule(POSITION_WORDS, MAYBE_FIO))42IMENI_WORDS = or_(rule(caseless('รยธรยผ'), is_dot().optional()), rule(caseless('รยธรยผรยตรยฝรยธ')))43IMENI = rule(IMENI_WORDS.optional(), MAYBE_PERSON)44SIMPLE = and_(or_(get_adjective_gram(), and_(get_noun_gram(), get_genitive())), TITLE_RULE)45COMPLEX = or_(rule(and_(get_adjective_gram(), TITLE_RULE), get_noun_gram()),46 rule(TITLE_RULE, is_dash().optional(), TITLE_RULE))47EXCEPTION = dictionary({'รยฐรยรยฑรยฐรย', 'รยฒรยฐรยรยฒรยฐรยรยบรยฐ'})48MAYBE_NAME = or_(rule(SIMPLE), rule(EXCEPTION))49MAIL_STREET = rule(get_int_type(), get_adjective_gram(), get_noun_gram())50LET_NAME = or_(MAYBE_NAME, LET, DATE, IMENI)51MODIFIER_NAME = rule(MODIFIER_WORDS, get_noun_gram())52PERSON_RULE = or_(LET_NAME, MODIFIER_NAME, MAIL_STREET)53ADDR_NAME = PERSON_RULE54SPB_SHORT = rule(normalized('รยฟรยธรยรยตรย')).interpretation(Address.city.const('รยรยฐรยฝรยบรย-รยฟรยตรยรยตรยรยฑรยรยรยณ'))55SBP_NAME = LET_NAME.interpretation(Address.street)56SPB_STREET = rule(SPB_SHORT, SBP_NAME).interpretation(Address)57STREET_NAME = ADDR_NAME.interpretation(Address.street)58STREET_WORDS = or_(rule(normalized('รยรยปรยธรยรยฐ')), rule(normalized('รยรยปรยธรยรยฐ'), normalized('รยทรยฝรยฐรยรยธรย')),59 rule(caseless('รยรยป'), is_dot().optional())60 ).interpretation(Address.street_type.const('รยรยปรยธรยรยฐ'))61STREET = or_(rule(STREET_WORDS, STREET_NAME), rule(STREET_NAME, STREET_WORDS)).interpretation(Address)62BOULEVARD_WORDS = or_(rule(caseless('รยฑ'), '-', caseless('รย')),63 rule(caseless('รยฑรยรยป'), is_dot().optional())).interpretation(Address.street_type.const('รยฑรยรยปรยรยฒรยฐรย'))64BOULEVARD_NAME = ADDR_NAME.interpretation(Address.street)65BOULEVARD = or_(rule(BOULEVARD_WORDS, BOULEVARD_NAME), rule(BOULEVARD_NAME, BOULEVARD_WORDS)).interpretation(Address)66HIGHWAY_WORDS = or_(rule(caseless('รย'), is_dot()), rule(normalized('รยรยพรยรยรยต'))).interpretation(67 Address.street_type.const('รยรยพรยรยรยต'))68HIGHWAY_NAME = ADDR_NAME.interpretation(Address.street)69HIGHWAY = or_(rule(HIGHWAY_WORDS, HIGHWAY_NAME), rule(HIGHWAY_NAME, HIGHWAY_WORDS)).interpretation(Address)70TRACT_WORDS = or_(rule(caseless('รยรย'), is_dot()), rule(normalized('รยรยรยฐรยบรย'))).interpretation(71 Address.street_type.const('รยรยรยฐรยบรย'))72TRACT_NAME = ADDR_NAME.interpretation(Address.street)73TRACT = or_(rule(TRACT_WORDS, TRACT_NAME), rule(TRACT_NAME, TRACT_WORDS)).interpretation(Address)74GAI_WORDS = rule(normalized('รยณรยฐรยน'))75GAI_NAME = ADDR_NAME76GAI = or_(rule(GAI_WORDS, GAI_NAME), rule(GAI_NAME, GAI_WORDS)).interpretation(Address.street)77VAL_WORDS = rule(normalized('รยฒรยฐรยป'))78VAL_NAME = ADDR_NAME79VAL = or_(rule(VAL_WORDS, VAL_NAME), rule(VAL_NAME, VAL_WORDS)).interpretation(Address.street)80ALLEY_WORDS = rule(normalized('รยฐรยปรยปรยตรยธ')).interpretation(Address.street_type.const('รยฐรยปรยปรยตรยธ'))81ALLEY_NAME = ADDR_NAME.interpretation(Address.street)82ALLEY = rule(ALLEY_NAME, ALLEY_WORDS).interpretation(Address)83AVENUE_WORDS = or_(rule(in_caseless({'รยฟรย', 'รยฟรยรยพรยรยฟ'}), is_dot().optional()),84 rule(caseless('รยฟรย'), '-', in_caseless({'รยบรย', 'รย'}), is_dot().optional()),85 rule(normalized('รยฟรยรยพรยรยฟรยตรยบรย'))).interpretation(Address.street_type.const('รยฟรยรยพรยรยฟรยตรยบรย'))86AVENUE_NAME = ADDR_NAME.interpretation(Address.street)87AVENUE = or_(rule(AVENUE_WORDS, AVENUE_NAME), rule(AVENUE_NAME, AVENUE_WORDS)).interpretation(Address)88DISTRICT_WORDS = or_(rule(in_caseless({'รยผรยบ', 'รยผรยบรย'}), is_dot().optional()),89 rule(caseless('รยผรยบ'), '-', in_caseless({'รยรยฝ', 'รยฝ'}), is_dot().optional()),90 ).interpretation(Address.street_type.const('รยผรยธรยบรยรยพรยรยฐรยนรยพรยฝ'))91DISTRICT_NAME = ADDR_NAME.interpretation(Address.street)92DISTRICT = or_(rule(DISTRICT_WORDS, DISTRICT_NAME), rule(DISTRICT_NAME, DISTRICT_WORDS)).interpretation(Address)93DRIVEWAY_WORDS = or_(rule(normalized('รยฟรยรยพรยตรยทรยด')), rule(caseless('รยฟรย'), is_dot().optional())).interpretation(94 Address.street_type.const('รยฟรยรยพรยตรยทรยด'))95DRIVEWAY_NAME = ADDR_NAME.interpretation(Address.street)96DRIVEWAY = or_(rule(DRIVEWAY_NAME, DRIVEWAY_WORDS), rule(DRIVEWAY_WORDS, DRIVEWAY_NAME)).interpretation(Address)97ALLEYWAY_WORDS = or_(rule(caseless('รยฟ'), is_dot()), rule(caseless('รยฟรยตรย'), is_dot().optional()), ).interpretation(98 Address.street_type.const('รยฟรยตรยรยตรยรยปรยพรยบ'))99ALLEYWAY_NAME = ADDR_NAME.interpretation(Address.street)100ALLEYWAY = or_(rule(ALLEYWAY_WORDS, ALLEYWAY_NAME), rule(ALLEYWAY_NAME, ALLEYWAY_WORDS)).interpretation(Address)101SQUARE_WORDS = or_(rule(caseless('รยฟรยป'), is_dot().optional())).interpretation(Address.street_type.const('รยฟรยปรยพรยรยฐรยดรย'))102SQUARE_NAME = ADDR_NAME.interpretation(Address.street)103SQUARE = or_(rule(SQUARE_WORDS, SQUARE_NAME), rule(SQUARE_NAME, SQUARE_WORDS)).interpretation(Address)104EMBANKMENT_WORDS = or_(rule(caseless('รยฝรยฐรยฑ'), is_dot().optional())).interpretation(105 Address.street_type.const('รยฝรยฐรยฑรยตรยรยตรยถรยฝรยฐรย'))106EMBANKMENT_NAME = ADDR_NAME.interpretation(Address.street)107EMBANKMENT = or_(rule(EMBANKMENT_WORDS, EMBANKMENT_NAME), rule(EMBANKMENT_NAME, EMBANKMENT_WORDS)).interpretation(108 Address)109LETTER = in_(ru)110QUOTE = in_(QUOTES)111LETTER = or_(rule(LETTER), rule(QUOTE, LETTER, QUOTE))112SEP = in_(r' /โ\-')113VALUE = or_(rule(get_int_type(), SEP, LETTER), rule(get_int_type(), LETTER),114 rule(get_int_type(), is_whitespace(), LETTER), rule(get_int_type()),115 rule(get_int_type(), SEP, get_int_type()))116ADDR_VALUE = rule(eq('รขยย').optional(), VALUE)117HOUSE_WORDS = or_(rule(normalized('รยฝรยพรยผรยตรย')), rule(normalized('รยดรยพรยผ')), rule(caseless('รยด'), is_dot())).interpretation(118 Address.house_type.const('รยดรยพรยผ'))119HOUSE_VALUE = ADDR_VALUE.interpretation(Address.house)120HOUSE = rule(HOUSE_WORDS, HOUSE_VALUE).interpretation(Address)121APARTMENT_WORDS = or_(rule(in_caseless('รยบรยฒ'), is_dot().optional()), rule(normalized('รยบรยฒรยฐรยรยรยธรยรยฐ'))).interpretation(122 Address.corpus_type.const('รยบรยพรยรยฟรยรย'))123APARTMENT_VALUE = ADDR_VALUE.interpretation(Address.apartment)124APARTMENT = or_(rule(APARTMENT_WORDS, APARTMENT_VALUE), rule(APARTMENT_VALUE, APARTMENT_WORDS)).interpretation(Address)125corpus_words_const = {'รยบ', 'รยบรยพรยรยฟ', 'รยบรยพรย', 'รยบรยพรยรยฟรยรย'}126CORPUS_WORDS = or_(rule(in_caseless(corpus_words_const), is_dot().optional())).interpretation(127 Address.corpus_type.const('รยบรยพรยรยฟรยรย'))128CORPUS_VALUE = ADDR_VALUE.interpretation(Address.corpus)129CORPUS = rule(CORPUS_WORDS, CORPUS_VALUE).interpretation(Address)130building_words_const = {'รยรย', 'รยรยรยรยพรยตรยฝรยธรยต'}131BUILDING_WORDS = or_(132 rule(in_caseless(building_words_const), is_dot().optional())).interpretation(133 Address.building_type.const('รยรยรยรยพรยตรยฝรยธรยต'))134BUILDING_VALUE = ADDR_VALUE.interpretation(Address.building)135BUILDING = rule(BUILDING_WORDS, BUILDING_VALUE).interpretation(Address)136STREET_HOUSE_CORPUS = rule(137 CITY.optional(),138 or_(HIGHWAY, STREET, STREET_NAME, AVENUE,139 DRIVEWAY, TRACT, SQUARE, EMBANKMENT, ALLEY,140 BOULEVARD, DISTRICT, GAI, VAL, ALLEYWAY),141 HOUSE_WORDS.optional(),142 HOUSE_VALUE,143 CORPUS_WORDS,144 CORPUS_VALUE145).interpretation(Address)146HOUSE_CORPUS = rule(HOUSE_VALUE, CORPUS_WORDS, CORPUS_VALUE).interpretation(Address)147HOUSE_BUILDING = rule(148 CITY.optional(),149 or_(HIGHWAY, STREET, STREET_NAME, AVENUE,150 DRIVEWAY, TRACT, SQUARE, EMBANKMENT, ALLEY,151 BOULEVARD, DISTRICT, GAI, VAL, ALLEYWAY),152 HOUSE_WORDS.optional(),153 HOUSE_VALUE,154 BUILDING_WORDS,155 BUILDING_VALUE156).interpretation(Address)157HOUSE_STREET = rule(158 CITY.optional(),159 or_(HIGHWAY, STREET, STREET_NAME, AVENUE,160 DRIVEWAY, TRACT, SQUARE, EMBANKMENT, ALLEY,161 BOULEVARD, DISTRICT, GAI, VAL, ALLEYWAY),162 HOUSE_WORDS.optional(),163 HOUSE_VALUE164).interpretation(Address)165VALUE_HOUSE = rule(get_int_type()).interpretation(Address.house)166NUMBER_HOUSE = rule(rule(normalized('รยฝรยพรยผรยตรย')), VALUE_HOUSE).interpretation(Address)167TRIPLE_HOUSE = rule(rule(normalized('รยดรยพรยผ')), VALUE_HOUSE).interpretation(Address)168DOM_APARTMENT = rule(HOUSE_VALUE, APARTMENT_VALUE).interpretation(Address)169ADDRESS_RULE = or_(170 SPB_STREET, CITY, NUMBER_HOUSE, HOUSE_CORPUS, HOUSE_BUILDING, TRIPLE_HOUSE,171 HOUSE_STREET, DOM_APARTMENT, STREET, DRIVEWAY, ALLEYWAY, SQUARE, HIGHWAY, TRACT, EMBANKMENT, VAL, GAI, ALLEY, HOUSE,172 STREET_HOUSE_CORPUS, HOUSE_BUILDING, BOULEVARD, DISTRICT, CORPUS, APARTMENT, BUILDING173).interpretation(Address)174Name = fact('Name', name)175name = and_(gram('Name'), not_(get_abbr_gram()), get_len())176patronymic = and_(gram('Patr'), not_(get_abbr_gram()), get_len())177surname = and_(gram('Surn'), get_len())178FIRST = name.interpretation(Name.first)179FIRST_ABBR = and_(get_abbr_gram(), true()).interpretation(Name.first)180LAST = surname.interpretation(Name.last)181MAYBE_LAST = and_(true(), not_(get_abbr_gram()), get_len()).interpretation(Name.last)182MIDDLE = patronymic.interpretation(Name.middle)183MIDDLE_SHORT = and_(get_abbr_gram(), true()).interpretation(Name.middle)184FIRST_LAST = rule(FIRST, MAYBE_LAST)185LAST_FIRST = rule(MAYBE_LAST, FIRST)186LAST_ABBR_FIRST = rule(MAYBE_LAST, FIRST_ABBR, is_dot())187LAST_ABBR_FIRST_MIDDLE = rule(MAYBE_LAST, FIRST_ABBR, is_dot(), MIDDLE_SHORT, is_dot())188FIRST_MIDDLE = rule(FIRST, MIDDLE)189MIDDLE_FIRST = rule(MIDDLE, FIRST)190FIRST_MIDDLE_LAST = rule(FIRST, MIDDLE, LAST)191LAST_FIRST_MIDDLE = rule(LAST, FIRST, MIDDLE)192SHORT_FIRST_MIDDLE_LAST = rule(FIRST_ABBR, is_dot(), MIDDLE_SHORT, is_dot(), MAYBE_LAST)193SHORT_FIRST_LAST = rule(FIRST_ABBR, is_dot(), MAYBE_LAST)194PERSON_RULE = or_(LAST_FIRST_MIDDLE, FIRST_MIDDLE_LAST, FIRST_MIDDLE, FIRST_LAST, LAST_FIRST, SHORT_FIRST_LAST,...
search.py
Source: search.py
...74 Job.job_id)75 a["results"] += games_and["results"] + companies_and["results"] + jobs_and["results"]76 # contains OR77 print("PARTIAL OR")78 games_queries_or = OrderedDict([("name", or_(* [Game.name.ilike("%" + x + "%") for x in terms])),79 ("deck", or_(* [Game.deck.ilike("%" + x + "%") for x in terms])),80 ("description", or_(* [Game.description.ilike("%" + x + "%") for x in terms]))])81 companies_queries_or = OrderedDict([("name", or_(* [Company.name.ilike("%" + x + "%") for x in terms])),82 ("deck", or_(* [Company.deck.ilike("%" + x + "%") for x in terms])),83 ("description", or_(* [Company.description.ilike("%" + x + "%") for x in terms]))])84 jobs_queries_or = OrderedDict([("job_title", or_(* [Job.job_title.ilike("%" + x + "%") for x in terms])),85 ("description", or_(* [Job.description.ilike("%" + x + "%") for x in terms])),86 ("location", or_(* [Job.location.ilike("%" + x + "%") for x in terms])),87 ("company_name", or_(* [Job.company_name.ilike("%" + x + "%") for x in terms]))])88 games_or = search_models(a, request.args["s"], Game, "games", "partial match OR", "OR", games_queries_or, Game.name,89 Game.game_id)90 companies_or = search_models(a, request.args["s"], Company, "companies", "partial match OR", "OR", companies_queries_or,91 Company.name, Company.company_id)92 jobs_or = search_models(a, request.args["s"], Job, "jobs", "partial match OR", "OR",93 jobs_queries_or, Job.job_title, Job.job_id)94 a["results"] += games_or["results"] + companies_or["results"] + jobs_or["results"]95 return a96# search_string, filter, entities97def search_models(temp_result, search_string, model, type, match_type, result_type, queries, *entities):98 result = {}99 result["results"] = []100 terms = search_string.rsplit(" ")101 for q in queries:...
results.py
Source: results.py
...33avg std min max3496706.3 2651.17 80156 9806235100318 1131.11 91302 10094036100649 1752.85 87910 10176237and_(or_(and_(IN9, or_(IN5, IN3)), and_(or_(and_(or_(and_(IN13, IN12), not_(not_(IN8))), IN16), and_(or_(and_(not_(not_(IN8)), or_(IN2, IN4)), or_(and_(and_(or_(and_(IN7, or_(IN3, IN3)), IN10), or_(and_(and_(not_(not_(IN8)), and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), not_(IN8))), IN10), or_(IN5, IN4))), IN16), IN2)), IN16), and_(or_(and_(not_(not_(IN1)), or_(IN2, and_(IN7, or_(or_(IN3, IN5), or_(and_(IN2, IN4), IN10))))), IN15), or_(IN12, and_(IN6, IN11))))), or_(IN2, and_(IN7, or_(or_(IN3, IN5), or_(and_(IN2, IN4), IN10)))))), or_(and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), or_(and_(IN6, IN8), IN10))), IN10), or_(IN5, IN4)), and_(or_(and_(or_(IN4, not_(not_(IN8))), IN16), and_(or_(and_(not_(not_(IN8)), or_(IN7, IN4)), IN15), or_(not_(not_(and_(IN13, IN3))), and_(IN6, IN11)))), IN12)))), or_(and_(or_(or_(and_(IN2, IN4), IN10), IN15), or_(not_(not_(and_(IN13, IN12))), and_(IN6, IN11))), or_(and_(and_(or_(and_(IN7, or_(IN3, IN3)), IN10), or_(and_(and_(or_(and_(IN7, or_(IN3, IN3)), IN13), and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), not_(IN8))), IN10), or_(and_(or_(and_(IN7, or_(and_(IN7, or_(IN3, IN3)), not_(IN8))), IN10), or_(IN5, IN4)), IN4))), IN16), IN2)), IN16), and_(or_(and_(not_(not_(IN1)), or_(IN2, and_(IN7, or_(or_(IN3, IN5), or_(and_(IN2, IN4), IN10))))), IN15), or_(not_(not_(IN8)), and_(IN6, IN11))))))3898445.8 491.316 95088 988623992616.2 2998.54 74400 938804096612.7 3473.9 73164 984344196469.9 1417.88 87818 976344298469.3 2206.32 87930 996764397442.4 2274.31 83064 98402...
Check out the latest blogs from LambdaTest on this topic:
Selenium, a project hosted by the Apache Software Foundation, is an umbrella open-source project comprising a variety of tools and libraries for test automation. Selenium automation framework enables QA engineers to perform automated web application testing using popular programming languages like Python, Java, JavaScript, C#, Ruby, and PHP.
In some sense, testing can be more difficult than coding, as validating the efficiency of the test cases (i.e., the โgoodnessโ of your tests) can be much harder than validating code correctness. In practice, the tests are just executed without any validation beyond the pass/fail verdict. On the contrary, the code is (hopefully) always validated by testing. By designing and executing the test cases the result is that some tests have passed, and some others have failed. Testers do not know much about how many bugs remain in the code, nor about their bug-revealing efficiency.
Software testing is fueling the IT sector forward by scaling up the test process and continuous product delivery. Currently, this profession is in huge demand, as it needs certified testers with expertise in automation testing. When it comes to outsourcing software testing jobs, whether itโs an IT company or an individual customer, they all look for accredited professionals. Thatโs why having an software testing certification has become the need of the hour for the folks interested in the test automation field. A well-known certificate issued by an authorized institute kind vouches that the certificate holder is skilled in a specific technology.
The key to successful test automation is to focus on tasks that maximize the return on investment (ROI), ensuring that you are automating the right tests and automating them in the right way. This is where test automation strategies come into play.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!