How to use in_robot method in robotframework-pageobjects

Best Python code snippet using robotframework-pageobjects_python

test.py

Source: test.py Github

copy

Full Screen

1from datetime import datetime2import matplotlib.pyplot as plt3from matplotlib import style4import pandas5# My classes for simulating trading6import SmoothAlgo as SAlgo7from StockSim import HistoricalStock8from BrokerSim import Broker9from RobotTrader import TrendRobot10############################11###### BEGIN : CONFIG ######12############################13TICKER = 'aapl'14START = datetime(2015,1,1)15START_WALLET = 5000016BUY_RATE = 1317BUY_MARGIN = 1.0818SELL_RATE = 2119SELL_MARGIN = 0.920SMOOTH_ALGO = SAlgo.MovingAverage(6)21# SMOOTH_ALGO = SAlgo.WeightedMovingAverage(32)22# SMOOTH_ALGO = SAlgo.ExponentialMovingAverage(16)23############################24####### END : CONFIG #######25############################26def simulate_robot_and_graph(in_robot):27 ### Keep track of data in these classes ###28 stocks_held = {}29 total_wallet = {}30 raw_wallet = {}31 raw_stock_price = {}32 smooth_stock_price = {}33 ### While there is still stock data, ###34 ### Get the robot to go through it and ###35 ### record the data ###36 while not in_robot.done():37 # Get robot to buy and sell for the day38 in_robot.simulate_day()39 # Get the current date from the stock class40 date = in_robot.get_broker().get_stock().get_date()41 # Get the amount of stocks held42 stocks_held[date] = in_robot.get_stocks_held() /​ STOCKS_HELD_SCALE43 # Get the wallet amount with and without stocks in them44 total_wallet[date] = in_robot.get_total_wallet() /​ WALLET_SCALE45 raw_wallet[date] = in_robot.get_raw_wallet() /​ WALLET_SCALE46 # get the raw and the stock prices47 raw_stock_price[date] = in_robot.get_stock_price()48 # Check if you should record two smooth values or just one49 smooth_stock_price[date] = in_robot.get_smooth_stock_price()50 # Plot all of the data51 pandas.Series(raw_stock_price).plot(label='Stock Price')52 pandas.Series(smooth_stock_price).plot(label='Smooth Stock Price')53 pandas.Series(total_wallet).plot(label='Total Wallet /​ ' + str(WALLET_SCALE))54 pandas.Series(raw_wallet).plot(label='Wallet /​ ' + str(WALLET_SCALE))55 #pandas.Series(stocks_held).plot(label='Stocks Held /​ ' + str(STOCKS_HELD_SCALE))56 # Show trading information57 plt.legend()58 plt.show()59 return in_robot60# Simulate the robot going through the stocks61def simulate_robot(in_robot):62 while not in_robot.done():63 in_robot.simulate_day()64 return in_robot65### The amount that the data will be scaled on the graph66STOCKS_HELD_SCALE = 1067WALLET_SCALE = 100068### Get the stock data into a class called my_stock ###69my_stock = HistoricalStock(ticker=TICKER, start=START)70### Simulate broker that holds all the money and my stocks ###71my_broker = Broker(stock=my_stock, wallet=START_WALLET)72### Create robot class and give it all the parameters ###73my_robot = TrendRobot(74 broker=my_broker, smoother=SMOOTH_ALGO, 75 buy_rate=BUY_RATE, sell_rate=SELL_RATE,76 buy_margin=BUY_MARGIN, sell_margin=SELL_MARGIN77)78# print(simulate_robot(my_robot).get_total_wallet())...

Full Screen

Full Screen

feedbackcontroller.py

Source: feedbackcontroller.py Github

copy

Full Screen

1# @author Simon Stepputtis <sstepput@asu.edu>, Interactive Robotics Lab, Arizona State University2import tensorflow as tf3from model_src.basismodel import BasisModel4class FeedbackController(tf.keras.layers.Layer):5 def __init__(self, robot_state_size, rnn_state_size, dimensions, basis_functions, special, **kwargs):6 super(FeedbackController, self).__init__(**kwargs)7 self.robot_state_size = robot_state_size8 self.state_size = rnn_state_size9 self.dims = dimensions10 self.n_bfuncs = basis_functions11 def build(self, input_shape):12 self.robot_gru = tf.keras.layers.GRUCell(units=self.robot_state_size)13 self.weight_dense_1 = tf.keras.layers.Dense(units=self.dims * self.n_bfuncs, activation=tf.keras.activations.relu)14 self.weight_dense_2 = tf.keras.layers.Dense(units=self.dims * self.n_bfuncs, activation=tf.keras.activations.relu)15 self.weight_dense_3 = tf.keras.layers.Dense(units=self.dims * self.n_bfuncs, activation=tf.keras.activations.linear)16 self.phase_dense_1 = tf.keras.layers.Dense(units=int(self.robot_state_size /​ 2.0), activation=tf.keras.activations.relu)17 self.phase_dense_2 = tf.keras.layers.Dense(units=1, activation=tf.keras.activations.hard_sigmoid)18 self.basismodel = BasisModel(dimensions=self.dims, nfunctions=self.n_bfuncs, scale=0.012)19 # @tf.function20 def call(self, inputs, states, constants=None, training=False, mask=None, **kwargs):21 # Get data ready22 in_robot = inputs23 st_robot_last = states[0]24 st_gru_last = states[1]25 cn_features = constants[0]26 cn_delta_t = constants[1]27 28 # Robot GRU:29 in_robot = tf.cond(tf.convert_to_tensor(training), lambda: st_robot_last, lambda: in_robot)30 e_robot, gru_state = self.robot_gru(inputs=in_robot, states=[st_gru_last])31 # Internal state:32 x = tf.keras.backend.concatenate((cn_features, e_robot), axis=1)33 # Use x to calcate the weights:34 weights = self.weight_dense_3(self.weight_dense_2(self.weight_dense_1(x)))35 weights = tf.keras.backend.reshape(weights, shape=[-1, self.dims, self.n_bfuncs])36 # Phase estimation, based on x:37 dt = 1.0 /​ (500.0 * cn_delta_t) # Calculates the actual dt38 phase = self.phase_dense_2(self.phase_dense_1(x))39 phase = phase + dt40 # Apply basis model:41 action, _ = self.basismodel((weights, tf.zeros_like(weights), phase))42 action = tf.squeeze(action)43 # Rebuild the state:44 new_states = (action, gru_state[0])45 # Return results (and state)...

Full Screen

Full Screen

Blogs

Check out the latest blogs from LambdaTest on this topic:

LIVE With Automation Testing For OTT Streaming Devices ????

People love to watch, read and interact with quality content — especially video content. Whether it is sports, news, TV shows, or videos captured on smartphones, people crave digital content. The emergence of OTT platforms has already shaped the way people consume content. Viewers can now enjoy their favorite shows whenever they want rather than at pre-set times. Thus, the OTT platform’s concept of viewing anything, anytime, anywhere has hit the right chord.

An Interactive Guide To CSS Hover Effects

Building a website is all about keeping the user experience in mind. Ultimately, it’s about providing visitors with a mind-blowing experience so they’ll keep coming back. One way to ensure visitors have a great time on your site is to add some eye-catching text or image animations.

Agile in Distributed Development &#8211; A Formula for Success

Agile has unquestionable benefits. The mainstream method has assisted numerous businesses in increasing organizational flexibility as a result, developing better, more intuitive software. Distributed development is also an important strategy for software companies. It gives access to global talent, the use of offshore outsourcing to reduce operating costs, and round-the-clock development.

Migrating Test Automation Suite To Cypress 10

There are times when developers get stuck with a problem that has to do with version changes. Trying to run the code or test without upgrading the package can result in unexpected errors.

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run robotframework-pageobjects automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful