How to use fun method in responses

Best Python code snippet using responses

lib_acquisition_function.py

Source:lib_acquisition_function.py Github

copy

Full Screen

...36 (res.fun < best_acquisition_value):37 res.x = numpy.ndarray.tolist(res.x)38 res.x = lib_data.match_val_type(res.x, x_bounds, x_types)39 if (minimize_constraints_fun is None) or \40 (minimize_constraints_fun(res.x) is True):41 best_acquisition_value = res.fun42 best_x = res.x43 outputs = None44 if best_x is not None:45 mu, sigma = fun_prediction(best_x, *fun_prediction_args)46 outputs = {'hyperparameter': best_x, 'expected_mu': mu,47 'expected_sigma': sigma, 'acquisition_func': "ei"}48 return outputs49def _expected_improvement(x, fun_prediction, fun_prediction_args,50 x_bounds, x_types, samples_y_aggregation,51 minimize_constraints_fun):52 # This is only for step-wise optimization53 x = lib_data.match_val_type(x, x_bounds, x_types)54 expected_improvement = sys.maxsize55 if (minimize_constraints_fun is None) or (56 minimize_constraints_fun(x) is True):57 mu, sigma = fun_prediction(x, *fun_prediction_args)58 loss_optimum = min(samples_y_aggregation)59 scaling_factor = -160 # In case sigma equals zero61 with numpy.errstate(divide="ignore"):62 Z = scaling_factor * (mu - loss_optimum) / sigma63 expected_improvement = scaling_factor * (mu - loss_optimum) * \64 norm.cdf(Z) + sigma * norm.pdf(Z)65 expected_improvement = 0.0 if sigma == 0.0 else expected_improvement66 # We want expected_improvement to be as large as possible67 # (i.e., as small as possible for minimize(...))68 expected_improvement = -1 * expected_improvement69 return expected_improvement70def next_hyperparameter_lowest_confidence(fun_prediction,71 fun_prediction_args,72 x_bounds, x_types,73 minimize_starting_points,74 minimize_constraints_fun=None):75 """76 "Lowest Confidence" acquisition function77 """78 best_x = None79 best_acquisition_value = None80 x_bounds_minmax = [[i[0], i[-1]] for i in x_bounds]81 x_bounds_minmax = numpy.array(x_bounds_minmax)82 for starting_point in numpy.array(minimize_starting_points):83 res = minimize(fun=_lowest_confidence,84 x0=starting_point.reshape(1, -1),85 bounds=x_bounds_minmax,86 method="L-BFGS-B",87 args=(fun_prediction,88 fun_prediction_args,89 x_bounds,90 x_types,91 minimize_constraints_fun))92 if (best_acquisition_value) is None or (93 res.fun < best_acquisition_value):94 res.x = numpy.ndarray.tolist(res.x)95 res.x = lib_data.match_val_type(res.x, x_bounds, x_types)96 if (minimize_constraints_fun is None) or (97 minimize_constraints_fun(res.x) is True):98 best_acquisition_value = res.fun99 best_x = res.x100 outputs = None101 if best_x is not None:102 mu, sigma = fun_prediction(best_x, *fun_prediction_args)103 outputs = {'hyperparameter': best_x, 'expected_mu': mu,104 'expected_sigma': sigma, 'acquisition_func': "lc"}105 return outputs106def _lowest_confidence(x, fun_prediction, fun_prediction_args,107 x_bounds, x_types, minimize_constraints_fun):108 # This is only for step-wise optimization109 x = lib_data.match_val_type(x, x_bounds, x_types)110 ci = sys.maxsize111 if (minimize_constraints_fun is None) or (112 minimize_constraints_fun(x) is True):113 mu, sigma = fun_prediction(x, *fun_prediction_args)114 ci = (sigma * 1.96 * 2) / mu115 # We want ci to be as large as possible116 # (i.e., as small as possible for minimize(...),117 # because this would mean lowest confidence118 ci = -1 * ci119 return ci120def next_hyperparameter_lowest_mu(fun_prediction,121 fun_prediction_args,122 x_bounds, x_types,123 minimize_starting_points,124 minimize_constraints_fun=None):125 """126 "Lowest Mu" acquisition function127 """128 best_x = None129 best_acquisition_value = None130 x_bounds_minmax = [[i[0], i[-1]] for i in x_bounds]131 x_bounds_minmax = numpy.array(x_bounds_minmax)132 for starting_point in numpy.array(minimize_starting_points):133 res = minimize(fun=_lowest_mu,134 x0=starting_point.reshape(1, -1),135 bounds=x_bounds_minmax,136 method="L-BFGS-B",137 args=(fun_prediction, fun_prediction_args,138 x_bounds, x_types, minimize_constraints_fun))139 if (best_acquisition_value is None) or (140 res.fun < best_acquisition_value):141 res.x = numpy.ndarray.tolist(res.x)142 res.x = lib_data.match_val_type(res.x, x_bounds, x_types)143 if (minimize_constraints_fun is None) or (144 minimize_constraints_fun(res.x) is True):145 best_acquisition_value = res.fun146 best_x = res.x147 outputs = None148 if best_x is not None:149 mu, sigma = fun_prediction(best_x, *fun_prediction_args)150 outputs = {'hyperparameter': best_x, 'expected_mu': mu,151 'expected_sigma': sigma, 'acquisition_func': "lm"}152 return outputs153def _lowest_mu(x, fun_prediction, fun_prediction_args,154 x_bounds, x_types, minimize_constraints_fun):155 """156 Calculate the lowest mu157 """158 # This is only for step-wise optimization159 x = lib_data.match_val_type(x, x_bounds, x_types)160 mu = sys.maxsize161 if (minimize_constraints_fun is None) or (162 minimize_constraints_fun(x) is True):163 mu, _ = fun_prediction(x, *fun_prediction_args)...

Full Screen

Full Screen

checkCreatMultiAndInitRecusion.py

Source:checkCreatMultiAndInitRecusion.py Github

copy

Full Screen

...51 def setVarSource(self):52 self.VarSource = "pstru" + self.struNameHld53 def setVarCheck(self):54 self.VarCheck = self.VarSource + "Check"55 def setfun(self):56 self.fun = "void " + getFunName(self.struNameHld) + "(" + self.struName + " *" + self.VarSource + ", " + self.struName + " *" + self.VarCheck + ")\n{\n"57 if self.VarLoopFlag:58 self.fun = self.fun + " u32 u32i;\n\n"59 for linenum, VarName in enumerate(self.VarNameList):60 VarryObject = re.search(r'([\w|_]+)\[([\w|_]+)\]', VarName)61 if VarryObject:62 VarName = VarryObject.group(1)63 VarSourceName = self.VarSource + "->" + VarName + "[u32i]"64 VarCheckName = self.VarCheck + "->" + VarName + "[u32i]"65 self.fun = self.fun + "\n for(u32i = 0; u32i < " + VarryObject.group(2) + "; u32i++)\n {\n"66 if IsStruct(VarName):67 self.fun = self.fun + " " + getFunName(self.VarStructNameList[linenum]) + "(&" + VarSourceName + ", &" + VarCheckName + ");\n"68 elif IsStrucPoint(VarName):69 self.fun = self.fun + " " + getFunName(self.VarStructNameList[linenum]) + "(" + VarSourceName + ", " + VarCheckName + ");\n"70 else:71 self.fun = self.fun + " CHECK_EQUAL_TEXT(" + VarCheckName + ", " + VarSourceName + ", " + "\"" + VarSourceName + "\");\n"72 self.fun = self.fun + " }\n\n"73 else:74 VarSourceName = self.VarSource + "->" + VarName75 VarCheckName = self.VarCheck + "->" + VarName76 if IsStruct(VarName):77 self.fun = self.fun + " " + getFunName(self.VarStructNameList[linenum]) + "(&" + VarSourceName + ", &" + VarCheckName + ");\n"78 elif IsStrucPoint(VarName):79 self.fun = self.fun + " " + getFunName(self.VarStructNameList[linenum]) + "(" + VarSourceName + ", " + VarCheckName + ");\n"80 else:81 self.fun = self.fun + " CHECK_EQUAL_TEXT(" + VarCheckName + ", " + VarSourceName + ", " + "\"" + VarSourceName + "\");\n"82 self.fun = self.fun + funEnd83 def getStruInitCode(self, struVarName,structInsList):84 subVarNameList = []85 for instance in structInsList:86 if struVarName == instance.struName:87 subVarNameList = instance.VarNameList88 break89 return subVarNameList90 def setInitFun(self):91 self.initFun = "void " + getInitFunName(self.struNameHld) + "( )\n{\n"92 self.initFun = self.initFun + " " + self.struName + " *" + self.VarSource + ";\n"93 for linenum, VarName in enumerate(self.VarNameList):94 VarryObject = re.search(r'([\w|_]+)\[([\w|_]+)\]', VarName)95 if VarryObject:96 VarName = VarryObject.group(1)97 VarSourceName = self.VarSource + "->" + VarName + "[u32i]"98 self.initFun = self.initFun + "\n for(u32i = 0; u32i < " + VarryObject.group(2) + "; u32i++)\n {\n"99 if IsStruct(VarName):100 self.initFun = self.initFun + " " + VarSourceName + " = ;\n"101 else:102 self.initFun = self.initFun + " " + VarSourceName + " = ;\n"103 self.initFun = self.initFun + " }\n\n"104 else:105 VarSourceName = self.VarSource + "->" + VarName106 if re.search(r'^stru', VarName):107 self.initFun = self.initFun + " " + VarSourceName + " = ;\n"108 else:109 self.initFun = self.initFun + " " + VarSourceName + " = ;\n"110 self.initFun = self.initFun + funEnd111 def subStruct(self):112 funInitTemp = ""113 codeLine = re.split(r'\n', code)114 for line in codeLine:115 if 116 def checkfunInit(self):117 codeLine = 118 def creatfun(self, code):119 self.setStruName(code)120 self.setVarNameList(code)121 self.setVarSource()122 self.setVarCheck()123 self.setfun()124 self.setInitFun()125fileDef = open('def.txt','r')126fileFun = open('fun.txt','w')127fileFunInit = open('funInit.txt','w')128fileDefStr = fileDef.read()129codeList = splitStructCode(fileDefStr)130for code in codeList:131 structInstance = StructClass()132 structInstance.creatfun(code)133 fileFun.write(structInstance.fun)134 fileFunInit.write(structInstance.initFun)135fileFun.close()136fileDef.close()...

Full Screen

Full Screen

fun_linecount.py

Source:fun_linecount.py Github

copy

Full Screen

1import os, codecs2import re3import xlwt4from os.path import join, getsize5#filedir = r'D:\ViewRoot\chengengyu_Merge\EMB5216_L2'6filedir = r'D:\ViewRoot\RRM\EMB5216_HL'7#filedir = r'D:\learn\HL DBA函数解析\now'8class Funline(object):9 def __init__(self):10 self.FunName = False;11 self.FunLineCount = 0;12 self.FunStart = 0;13 self.FunEnd = 0;14 self.FunFileName = False;15 16def findfiles(filedir):17 filelist = []18 filename_file = open('filename.txt','w')19 for root, dirs, files in os.walk(filedir):20 if files:21 for name in files:22 if re.search('.c$', name):23 filelist.append(join(root, name)) 24 filename_file.write(name+'\n')25 filename_file.close26 return filelist27#获取文件列表28filelist = findfiles(filedir)29fun_check_result = open('fun_check_result.txt','w')30fun_check_errLine = open('fun_check_errLine.txt','w')31FunLineList = []32for file in filelist:33 filename = ''34 filename = re.findall(r'\\([^\\]+\.c)$', file)35 try:36 fp = codecs.open(file,'rb')37 #fp = open(file,'r')38 #print(file)39 FirstFunFlag = True40 LastFunFlag = False41 FunLineNum = 042 for num,eachline in enumerate(fp): 43 try:44 #尝试用 gbk解码45 eachline = eachline.decode('GBK')46 linetemp = eachline.strip()47 if re.search(r'^(?:void|s32|OSP_STATUS|u32|u8|u16|s8|s16) +\S+(?:$|\s*\(.*(,|\)))', linetemp):48 if not re.search(r';|extern', linetemp):49 if FirstFunFlag == False: #不是第一个函数则需要记录其行数50 #print(num, FunlineNum)51 if fun.FunLineCount != 0:52 fun_check_result.write("异常内容fun:" + fun.FunName + eachline + '\n')53 else:54 fun.FunLineCount = num - FunLineNum55 fun.FunStart = FunLineNum56 fun.FunEnd = num57 fun = Funline()58 FunLineList.append(fun)59 FirstFunFlag = False60 FunLineNum = num #记录函数开始的行数61 LastFunFlag = True #假定这是最后一个函数62 if fun.FunName != False:63 fun_check_result.write("异常内容fun:" + eachline + '\n')64 else:65 fun.FunName = linetemp66 fun.FunFileName = filename67 except Exception as e:68 #解析失败,通常是因为一些汉字的半角全角有问题 69 print(e)70 fun_check_errLine.write(str(e))71 err = "无法解析的行: 文件为" + file + "行号为:" + str(num+1) + '\n'72 fun_check_errLine.write(err)73 fp.close74 if LastFunFlag:75 if fun.FunLineCount != 0:76 fun_check_result.write("异常内容fun:" + fun.FunName + eachline + '\n')77 else:78 fun.FunLineCount = num - FunLineNum79 fun.FunStart = FunLineNum80 fun.FunEnd = num81 except Exception as e:82 print(e)83 fun_check_errLine.write(str(e))84 err = '无法打开文件' + file +'\n'85 fun_check_result.write(err)86fun_check_result.close()87fun_check_errLine.close()88#print(FunLineList)89styles = {'datetime': xlwt.easyxf(num_format_str='yyyy-mm-dd hh:mm:ss'),90 'date': xlwt.easyxf(num_format_str='yyyy-mm-dd'),91 'time': xlwt.easyxf(num_format_str='hh:mm:ss'),92 'header': xlwt.easyxf('font: name Times New Roman, color-index black, bold on', num_format_str='#,##0.00'),93 'default': xlwt.Style.default_style}94wb = xlwt.Workbook(encoding = 'utf-8')95sheet = wb.add_sheet(u'函数')96row = 097sheet.write(row,0, '文件名')98sheet.write(row,1, '函数名')99sheet.write(row,2, '行数')100sheet.write(row,3, '开始行数')101sheet.write(row,4, '结束行数')102for num,eachitem in enumerate(FunLineList): 103 row = num + 1104 sheet.write(row,0, eachitem.FunFileName)105 sheet.write(row,1, eachitem.FunName)106 sheet.write(row,2, eachitem.FunLineCount)107 sheet.write(row,3, eachitem.FunStart)108 sheet.write(row,4, eachitem.FunEnd)...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run responses automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful