Best Python code snippet using pytest-play_python
imageStats.py
Source: imageStats.py
1import sys, copy2import numpy as np3import itk4import numpy as np5import pandas as pd6from scipy import ndimage7CPUImageType = itk.Image[itk.F,2]8ReaderType = itk.ImageFileReader[CPUImageType]9reader = ReaderType.New();10reader.SetFileName(sys.argv[1]);11reader.Update();12reference_CT_slice=itk.GetArrayFromImage(reader.GetOutput());13reader.SetFileName(sys.argv[2]);14reader.Update();15simulated_CT_slice=itk.GetArrayFromImage(reader.GetOutput());16roi_length = 4017reference_fibre_in_centre = reference_CT_slice[429 - roi_length:430 + roi_length, 520 - roi_length:521 + roi_length];18test_fibre_in_centre = simulated_CT_slice[429 - roi_length:430 + roi_length, 520 - roi_length:521 + roi_length];19def create_circular_mask(h, w, center=None, radius=None):20 if center is None: # use the middle of the image21 center = (int(w/2), int(h/2))22 if radius is None: # use the smallest distance between the center and image walls23 radius = min(center[0], center[1], w-center[0], h-center[1])24 Y, X = np.ogrid[:h, :w]25 dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)26 mask = dist_from_center <= radius27 return np.array(mask, dtype=bool);28def createMasks(mask_shape):29 fibre_radius_in_px = int(108 / 1.9) / 230 core_radius_in_px = int(16 / 1.9) / 231 core_mask = create_circular_mask(mask_shape[1], mask_shape[0], None, core_radius_in_px);32 fibre_mask = create_circular_mask(mask_shape[1], mask_shape[0], None, fibre_radius_in_px);33 matrix_mask = np.logical_not(fibre_mask);34 #fibre_mask = np.subtract(fibre_mask, core_mask);35 fibre_mask = np.bitwise_xor(fibre_mask, core_mask);36 #TypeError: numpy boolean subtract, the `-` operator, is not supported, use the bitwise_xor, the `^` operator, or the logical_xor function instead.37 return core_mask, fibre_mask, matrix_mask38mask_shape = reference_fibre_in_centre.shape;39core_mask, fibre_mask, matrix_mask = createMasks(mask_shape);40core_mask = ndimage.binary_erosion(core_mask).astype(core_mask.dtype);41for i in range(4):42 fibre_mask = ndimage.binary_erosion(fibre_mask).astype(fibre_mask.dtype);43 matrix_mask = ndimage.binary_erosion(matrix_mask, border_value=1).astype(matrix_mask.dtype);44core_mask.shape = [core_mask.shape[0], core_mask.shape[1]]45fibre_mask.shape = [fibre_mask.shape[0], fibre_mask.shape[1]]46matrix_mask.shape = [matrix_mask.shape[0], matrix_mask.shape[1]]47def getMuStatistics(reference_fibre_in_centre, test_fibre_in_centre, core_mask, fibre_mask, matrix_mask):48 data = [];49 index = np.nonzero(core_mask);50 data.append(["Theorical",51 "Core",52 "W",53 341.61,54 341.61,55 341.61,56 0.0]);57 data.append(["Experimental",58 "Core",59 "W",60 np.min(reference_fibre_in_centre[index]),61 np.max(reference_fibre_in_centre[index]),62 np.mean(reference_fibre_in_centre[index]),63 np.std(reference_fibre_in_centre[index])]);64 data.append(["Simulated",65 "Core",66 "W",67 np.min(test_fibre_in_centre[index]),68 np.max(test_fibre_in_centre[index]),69 np.mean(test_fibre_in_centre[index]),70 np.std(test_fibre_in_centre[index])]);71 index = np.nonzero(fibre_mask);72 data.append(["Theorical",73 "Fibre",74 "SiC",75 2.736,76 2.736,77 2.736,78 0.0]);79 data.append(["Experimental",80 "Fibre",81 "SiC",82 np.min(reference_fibre_in_centre[index]),83 np.max(reference_fibre_in_centre[index]),84 np.mean(reference_fibre_in_centre[index]),85 np.std(reference_fibre_in_centre[index])]);86 data.append(["Simulated",87 "Fibre",88 "SiC",89 np.min(test_fibre_in_centre[index]),90 np.max(test_fibre_in_centre[index]),91 np.mean(test_fibre_in_centre[index]),92 np.std(test_fibre_in_centre[index])]);93 index = np.nonzero(matrix_mask);94 data.append(["Theorical",95 "Matrix",96 "Ti90Al6V4",97 13.1274,98 13.1274,99 13.1274,100 0.0]);101 data.append(["Experimental",102 "Matrix",103 "Ti90Al6V4",104 np.min(reference_fibre_in_centre[index]),105 np.max(reference_fibre_in_centre[index]),106 np.mean(reference_fibre_in_centre[index]),107 np.std(reference_fibre_in_centre[index])]);108 data.append(["Simulated",109 "Matrix",110 "Ti90Al6V4",111 np.min(test_fibre_in_centre[index]),112 np.max(test_fibre_in_centre[index]),113 np.mean(test_fibre_in_centre[index]),114 np.std(test_fibre_in_centre[index])]);115 return pd.DataFrame(data,116 index=None,117 columns=['CT', 'Structure', "Composition", 'min', 'max', 'mean', 'stddev'])118df = getMuStatistics(reference_fibre_in_centre, test_fibre_in_centre, core_mask, fibre_mask, matrix_mask)119test_experimental=df["CT"] == "Experimental";120test_simulated=df["CT"] == "Simulated";121test_W=df["Composition"] == "W"122test_SiC=df["Composition"] == "SiC"123test_Ti90Al6V4=df["Composition"] == "Ti90Al6V4"124print(df[test_experimental & test_W]["mean"].astype(float)[1],125 df[test_experimental & test_W]["stddev"].astype(float)[1],126 df[test_simulated & test_W]["mean"].astype(float)[2],127 df[test_simulated & test_W]["stddev"].astype(float)[2],128 df[test_experimental & test_SiC]["mean"].astype(float)[4],129 df[test_experimental & test_SiC]["stddev"].astype(float)[4],130 df[test_simulated & test_SiC]["mean"].astype(float)[5],131 df[test_simulated & test_SiC]["stddev"].astype(float)[5],132 df[test_experimental & test_Ti90Al6V4]["mean"].astype(float)[7],133 df[test_experimental & test_Ti90Al6V4]["stddev"].astype(float)[7],134 df[test_simulated & test_Ti90Al6V4]["mean"].astype(float)[8],135 df[test_simulated & test_Ti90Al6V4]["stddev"].astype(float)[8])136# MEAN_CORE_SIM=`grep "After noise CORE SIMULATED (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 13`137# STDDEV_CORE_SIM=`grep "After noise CORE SIMULATED (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 14`138#139# MEAN_FIBRE_REF=`grep "After noise FIBRE REF (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 13`140# STDDEV_FIBRE_REF=`grep "After noise FIBRE REF (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 14`141#142# MEAN_FIBRE_SIM=`grep "After noise FIBRE SIMULATED (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 13`143# STDDEV_FIBRE_SIM=`grep "After noise FIBRE SIMULATED (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 14`144#145# MEAN_MATRIX_REF=`grep "After noise MATRIX REF (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 13`146# STDDEV_MATRIX_REF=`grep "After noise MATRIX REF (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 14`147#148# MEAN_MATRIX_SIM=`grep "After noise MATRIX SIMULATED (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 13`149# STDDEV_MATRIX_SIM=`grep "After noise MATRIX SIMULATED (MIN, MEDIAN, MAX, MEAN, STDDEV)" run_SCW_$i/optimisation-$i.out | cut -d " " -f 14`...
test_experimental.py
Source: test_experimental.py
2# Simon Hulse3# simon.hulse@chem.ox.ac.uk4# Last Edited: Thu 13 Jan 2022 17:31:26 GMT5from nmr_sims. experimental import Experimental6def test_experimental():7 experimental = Experimental(8 channels=["1H", "13C"],9 sweep_widths=[10000, 100000],10 field="800MHz",11 temperature="25C",...
test_experimental_data.py
Source: test_experimental_data.py
1from neuromodcell.experimental_data import Experimental2def test_experimental():3 exp_trial = Experimental()4 exp_trial.define_exp(mean = 2)...
Check out the latest blogs from LambdaTest on this topic:
In today’s data-driven world, the ability to access and analyze large amounts of data can give researchers, businesses & organizations a competitive edge. One of the most important & free sources of this data is the Internet, which can be accessed and mined through web scraping.
In addition to the four values, the Agile Manifesto contains twelve principles that are used as guides for all methodologies included under the Agile movement, such as XP, Scrum, and Kanban.
Sometimes, in our test code, we need to handle actions that apparently could not be done automatically. For example, some mouse actions such as context click, double click, drag and drop, mouse movements, and some special key down and key up actions. These specific actions could be crucial depending on the project context.
Have you ever visited a website that only has plain text and images? Most probably, no. It’s because such websites do not exist now. But there was a time when websites only had plain text and images with almost no styling. For the longest time, websites did not focus on user experience. For instance, this is how eBay’s homepage looked in 1999.
Unit testing is typically software testing within the developer domain. As the QA role expands in DevOps, QAOps, DesignOps, or within an Agile team, QA testers often find themselves creating unit tests. QA testers may create unit tests within the code using a specified unit testing tool, or independently using a variety of methods.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!