How to use data_base_path method in pytest-play

Best Python code snippet using pytest-play_python

data_io.py

Source:data_io.py Github

copy

Full Screen

1import asyncio2import os3from collections import Counter, OrderedDict4from multiprocessing import Pool5import numpy as np6import torch7import torch.nn as nn8import torch.nn.functional as F9from kaldi_io import read_mat, read_vec_flt10from sklearn.preprocessing import KBinsDiscretizer, LabelEncoder, StandardScaler11from torch.utils.data import Dataset12class MissingClassMapError(Exception):13 pass14def load_n_col(file, numpy=False):15 data = []16 with open(file) as fp:17 for line in fp:18 data.append(line.strip().split(" "))19 columns = list(zip(*data))20 if numpy:21 columns = [np.array(list(i)) for i in columns]22 else:23 columns = [list(i) for i in columns]24 return columns25def odict_from_2_col(file, numpy=False):26 col0, col1 = load_n_col(file, numpy=numpy)27 return OrderedDict({c0: c1 for c0, c1 in zip(col0, col1)})28def load_one_tomany(file, numpy=False):29 one = []30 many = []31 with open(file) as fp:32 for line in fp:33 line = line.strip().split(" ", 1)34 one.append(line[0])35 m = line[1].split(" ")36 many.append(np.array(m) if numpy else m)37 if numpy:38 one = np.array(one)39 return one, many40def train_transform(feats, seqlen):41 leeway = feats.shape[0] - seqlen42 startslice = np.random.randint(0, int(leeway)) if leeway > 0 else 043 feats = (44 feats[startslice : startslice + seqlen]45 if leeway > 046 else np.pad(feats, [(0, -leeway), (0, 0)], "constant")47 )48 return torch.FloatTensor(feats)49async def get_item_train(instructions):50 fpath = instructions[0]51 seqlen = instructions[1]52 raw_feats = read_mat(fpath)53 feats = train_transform(raw_feats, seqlen)54 return feats55async def get_item_test(filepath):56 raw_feats = read_mat(filepath)57 return torch.FloatTensor(raw_feats)58def async_map(coroutine_func, iterable):59 loop = asyncio.get_event_loop()60 future = asyncio.gather(*(coroutine_func(param) for param in iterable))61 return loop.run_until_complete(future)62class SpeakerDataset(Dataset):63 def __init__(64 self,65 data_base_path,66 real_speaker_labels=True,67 asynchr=True,68 num_workers=3,69 test_mode=False,70 class_enc_dict={},71 **kwargs72 ):73 self.data_base_path = data_base_path74 self.num_workers = num_workers75 self.test_mode = test_mode76 self.real_speaker_labels = real_speaker_labels77 # self.label_types = label_types78 if self.test_mode:79 self.label_types = []80 else:81 self.label_types = ["speaker"] if self.real_speaker_labels else []82 if os.path.isfile(os.path.join(data_base_path, "spk2nat")):83 self.label_types.append("nationality")84 if os.path.isfile(os.path.join(data_base_path, "spk2gender")):85 self.label_types.append("gender")86 if os.path.isfile(os.path.join(data_base_path, "utt2age")):87 self.label_types.append("age_regression")88 self.label_types.append("age")89 if os.path.isfile(os.path.join(data_base_path, "utt2rec")):90 self.label_types.append("rec")91 if os.path.isfile(os.path.join(data_base_path, "utt2genre")):92 self.label_types.append("genre")93 if self.test_mode and self.label_types:94 assert class_enc_dict, "Class mapping must be passed to test mode dataset"95 self.class_enc_dict = class_enc_dict96 utt2spk_path = os.path.join(data_base_path, "utt2spk")97 spk2utt_path = os.path.join(data_base_path, "spk2utt")98 feats_scp_path = os.path.join(data_base_path, "feats.scp")99 assert os.path.isfile(utt2spk_path)100 assert os.path.isfile(feats_scp_path)101 assert os.path.isfile(spk2utt_path)102 verilist_path = os.path.join(data_base_path, "veri_pairs")103 if self.test_mode:104 if os.path.isfile(verilist_path):105 self.veri_labs, self.veri_0, self.veri_1 = load_n_col(106 verilist_path, numpy=True107 )108 self.veri_labs = self.veri_labs.astype(int)109 self.veripairs = True110 else:111 self.veripairs = False112 self.utts, self.uspkrs = load_n_col(utt2spk_path)113 self.utt_fpath_dict = odict_from_2_col(feats_scp_path)114 self.label_enc = LabelEncoder()115 self.original_spkrs, self.spkutts = load_one_tomany(spk2utt_path)116 self.spkrs = self.label_enc.fit_transform(self.original_spkrs)117 self.spk_utt_dict = OrderedDict(118 {k: v for k, v in zip(self.spkrs, self.spkutts)}119 )120 self.spk_original_spk_dict = {121 k: v for k, v in zip(self.spkrs, self.original_spkrs)122 }123 self.uspkrs = self.label_enc.transform(self.uspkrs)124 self.utt_spkr_dict = OrderedDict({k: v for k, v in zip(self.utts, self.uspkrs)})125 self.utt_list = list(self.utt_fpath_dict.keys())126 self.first_batch = True127 self.num_classes = (128 {"speaker": len(self.label_enc.classes_)}129 if self.real_speaker_labels130 else {}131 )132 self.asynchr = asynchr133 if "nationality" in self.label_types:134 self.natspkrs, self.nats = load_n_col(135 os.path.join(data_base_path, "spk2nat")136 )137 self.nats = [n.lower().strip() for n in self.nats]138 self.natspkrs = self.label_enc.transform(self.natspkrs)139 self.nat_label_enc = LabelEncoder()140 if not self.test_mode:141 self.nats = self.nat_label_enc.fit_transform(self.nats)142 else:143 self.nat_label_enc = self.class_enc_dict["nationality"]144 self.nats = self.nat_label_enc.transform(self.nats)145 self.spk_nat_dict = OrderedDict(146 {k: v for k, v in zip(self.natspkrs, self.nats)}147 )148 self.num_classes["nationality"] = len(self.nat_label_enc.classes_)149 if "gender" in self.label_types:150 self.genspkrs, self.genders = load_n_col(151 os.path.join(data_base_path, "spk2gender")152 )153 self.genspkrs = self.label_enc.transform(self.genspkrs)154 self.gen_label_enc = LabelEncoder()155 if not self.test_mode:156 self.genders = self.gen_label_enc.fit_transform(self.genders)157 else:158 self.gen_label_enc = self.class_enc_dict["gender"]159 self.genders = self.gen_label_enc.transform(self.genders)160 self.spk_gen_dict = OrderedDict(161 {k: v for k, v in zip(self.genspkrs, self.genders)}162 )163 self.num_classes["gender"] = len(self.gen_label_enc.classes_)164 if "age" in self.label_types:165 # self.genspkrs, self.genders = load_n_col(os.path.join(data_base_path, 'spk2gender'))166 self.num_age_bins = (167 kwargs["num_age_bins"] if "num_age_bins" in kwargs else 10168 )169 self.ageutts, self.ages = load_n_col(170 os.path.join(data_base_path, "utt2age")171 )172 self.ages = np.array(self.ages).astype(np.float)173 self.age_label_enc = KBinsDiscretizer(174 n_bins=self.num_age_bins, encode="ordinal", strategy="uniform"175 )176 if not self.test_mode or "age" not in self.class_enc_dict:177 self.age_classes = self.age_label_enc.fit_transform(178 np.array(self.ages).reshape(-1, 1)179 ).flatten()180 else:181 self.age_label_enc = self.class_enc_dict["age"]182 self.age_classes = self.age_label_enc.transform(183 np.array(self.ages).reshape(-1, 1)184 ).flatten()185 self.utt_age_class_dict = OrderedDict(186 {k: v for k, v in zip(self.ageutts, self.age_classes)}187 )188 self.num_classes["age"] = self.num_age_bins189 if "age_regression" in self.label_types:190 # self.genspkrs, self.genders = load_n_col(os.path.join(data_base_path, 'spk2gender'))191 self.ageutts, self.ages = load_n_col(192 os.path.join(data_base_path, "utt2age")193 )194 self.ages = np.array(self.ages).astype(np.float)195 self.age_reg_enc = StandardScaler()196 if not self.test_mode or "age_regression" not in self.class_enc_dict:197 self.ages = self.age_reg_enc.fit_transform(198 np.array(self.ages).reshape(-1, 1)199 ).flatten()200 else:201 self.age_reg_enc = self.class_enc_dict["age_regression"]202 self.ages = self.age_reg_enc.transform(203 np.array(self.ages).reshape(-1, 1)204 ).flatten()205 self.utt_age_dict = OrderedDict(206 {k: v for k, v in zip(self.ageutts, self.ages)}207 )208 self.num_classes["age_regression"] = 1209 if "rec" in self.label_types:210 self.recutts, self.recs = load_n_col(211 os.path.join(data_base_path, "utt2rec")212 )213 self.recs = np.array(self.recs)214 self.rec_label_enc = LabelEncoder()215 if not self.test_mode:216 self.recs = self.rec_label_enc.fit_transform(self.recs)217 else:218 self.rec_label_enc = self.class_enc_dict["rec"]219 self.recs = self.rec_label_enc.transform(self.recs)220 self.utt_rec_dict = OrderedDict(221 {k: v for k, v in zip(self.recutts, self.recs)}222 )223 self.num_classes["rec"] = len(self.rec_label_enc.classes_)224 if "genre" in self.label_types:225 self.genreutts, self.genres = load_n_col(226 os.path.join(data_base_path, "utt2genre")227 )228 self.genres = np.array(self.genres)229 self.genre_label_enc = LabelEncoder()230 if not self.test_mode:231 self.genres = self.genre_label_enc.fit_transform(self.genres)232 self.utt_genre_dict = OrderedDict(233 {k: v for k, v in zip(self.genreutts, self.genres)}234 )235 self.num_classes["genre"] = len(self.genre_label_enc.classes_)236 else:237 # TODO: add this check to other attributes238 if "genre" in self.class_enc_dict:239 self.genre_label_enc = self.class_enc_dict["genre"]240 self.genres = self.genre_label_enc.transform(self.genres)241 self.utt_genre_dict = OrderedDict(242 {k: v for k, v in zip(self.genreutts, self.genres)}243 )244 self.num_classes["genre"] = len(self.genre_label_enc.classes_)245 else:246 self.label_types.remove("genre")247 self.class_enc_dict = self.get_class_encs()248 def __len__(self):249 return len(self.utt_list)250 def get_class_encs(self):251 class_enc_dict = {}252 if "speaker" in self.label_types:253 class_enc_dict["speaker"] = self.label_enc254 if "age" in self.label_types:255 class_enc_dict["age"] = self.age_label_enc256 if "age_regression" in self.label_types:257 class_enc_dict["age_regression"] = self.age_reg_enc258 if "nationality" in self.label_types:259 class_enc_dict["nationality"] = self.nat_label_enc260 if "gender" in self.label_types:261 class_enc_dict["gender"] = self.gen_label_enc262 if "rec" in self.label_types:263 class_enc_dict["rec"] = self.rec_label_enc264 if "genre" in self.label_types:265 class_enc_dict["genre"] = self.genre_label_enc266 self.class_enc_dict = class_enc_dict267 return class_enc_dict268 @staticmethod269 def get_item(instructions):270 fpath = instructions[0]271 seqlen = instructions[1]272 feats = read_mat(fpath)273 feats = train_transform(feats, seqlen)274 return feats275 def get_item_test(self, idx):276 utt = self.utt_list[idx]277 fpath = self.utt_fpath_dict[utt]278 feats = read_mat(fpath)279 feats = torch.FloatTensor(feats)280 label_dict = {}281 speaker = self.utt_spkr_dict[utt]282 if "speaker" in self.label_types:283 label_dict["speaker"] = torch.LongTensor([speaker])284 if "gender" in self.label_types:285 label_dict["gender"] = torch.LongTensor([self.spk_gen_dict[speaker]])286 if "nationality" in self.label_types:287 label_dict["nationality"] = torch.LongTensor([self.spk_nat_dict[speaker]])288 if "age" in self.label_types:289 label_dict["age"] = torch.LongTensor([self.utt_age_class_dict[utt]])290 if "age_regression" in self.label_types:291 label_dict["age_regression"] = torch.FloatTensor([self.utt_age_dict[utt]])292 if "genre" in self.label_types:293 label_dict["genre"] = torch.LongTensor([self.utt_genre_dict[utt]])294 return feats, label_dict295 def get_test_items(self, num_items=-1, exclude_speakers=None, use_async=True):296 utts = self.utt_list297 if num_items >= 1:298 replace = len(utts) <= num_items299 utts = np.random.choice(utts, size=num_items, replace=replace)300 utts = np.array(utts)301 spkrs = np.array([self.utt_spkr_dict[utt] for utt in utts])302 original_spkrs = np.array([self.spk_original_spk_dict[spkr] for spkr in spkrs])303 if exclude_speakers:304 mask = np.array(305 [False if s in exclude_speakers else True for s in original_spkrs]306 )307 utts = utts[mask]308 spkrs = spkrs[mask]309 original_spkrs = original_spkrs[mask]310 fpaths = [self.utt_fpath_dict[utt] for utt in utts]311 if use_async:312 feats = async_map(get_item_test, fpaths)313 else:314 feats = [torch.FloatTensor(read_mat(f)) for f in fpaths]315 label_dict = {}316 label_dict["speaker"] = np.array(spkrs)317 label_dict["original_speaker"] = np.array(original_spkrs)318 if "nationality" in self.label_types:319 label_dict["nationality"] = np.array([self.spk_nat_dict[s] for s in spkrs])320 if "gender" in self.label_types:321 label_dict["gender"] = np.array([self.spk_gen_dict[s] for s in spkrs])322 if "age" in self.label_types:323 label_dict["age"] = np.array([self.utt_age_class_dict[utt] for utt in utts])324 if "age_regression" in self.label_types:325 label_dict["age_regression"] = np.array(326 [self.utt_age_dict[utt] for utt in utts]327 )328 if "genre" in self.label_types:329 label_dict["genre"] = np.array([self.utt_genre_dict[utt] for utt in utts])330 return feats, label_dict, utts331 def get_batches(self, batch_size=256, max_seq_len=400, sp_tensor=True):332 """333 Main data iterator, specify batch_size and max_seq_len334 sp_tensor determines whether speaker labels are returned as Tensor object or not335 """336 # with Parallel(n_jobs=self.num_workers) as parallel:337 self.idpool = self.spkrs.copy()338 assert batch_size < len(339 self.idpool340 ) # Metric learning assumption large num classes341 lens = [max_seq_len for _ in range(batch_size)]342 while True:343 if len(self.idpool) <= batch_size:344 batch_ids = np.array(self.idpool)345 self.idpool = self.spkrs.copy()346 rem_ids = np.random.choice(347 self.idpool, size=batch_size - len(batch_ids), replace=False348 )349 batch_ids = np.concatenate([batch_ids, rem_ids])350 self.idpool = list(set(self.idpool) - set(rem_ids))351 else:352 batch_ids = np.random.choice(353 self.idpool, size=batch_size, replace=False354 )355 self.idpool = list(set(self.idpool) - set(batch_ids))356 batch_fpaths = []357 batch_utts = []358 for i in batch_ids:359 utt = np.random.choice(self.spk_utt_dict[i])360 batch_utts.append(utt)361 batch_fpaths.append(self.utt_fpath_dict[utt])362 if self.asynchr:363 batch_feats = async_map(get_item_train, zip(batch_fpaths, lens))364 else:365 batch_feats = [self.get_item(a) for a in zip(batch_fpaths, lens)]366 # batch_feats = parallel(delayed(self.get_item)(a) for a in zip(batch_fpaths, lens))367 label_dict = {}368 if "speaker" in self.label_types:369 label_dict["speaker"] = (370 torch.LongTensor(batch_ids) if sp_tensor else batch_ids371 )372 if "nationality" in self.label_types:373 label_dict["nationality"] = torch.LongTensor(374 [self.spk_nat_dict[s] for s in batch_ids]375 )376 if "gender" in self.label_types:377 label_dict["gender"] = torch.LongTensor(378 [self.spk_gen_dict[s] for s in batch_ids]379 )380 if "age" in self.label_types:381 label_dict["age"] = torch.LongTensor(382 [self.utt_age_class_dict[u] for u in batch_utts]383 )384 if "age_regression" in self.label_types:385 label_dict["age_regression"] = torch.FloatTensor(386 [self.utt_age_dict[u] for u in batch_utts]387 )388 if "rec" in self.label_types:389 label_dict["rec"] = torch.LongTensor(390 [self.utt_rec_dict[u] for u in batch_utts]391 )392 if "genre" in self.label_types:393 label_dict["genre"] = torch.LongTensor(394 [self.utt_genre_dict[u] for u in batch_utts]395 )396 yield torch.stack(batch_feats), label_dict397 def get_batches_naive(self, batch_size=256, max_seq_len=400, sp_tensor=True):398 """399 Main data iterator, specify batch_size and max_seq_len400 sp_tensor determines whether speaker labels are returned as Tensor object or not401 """402 self.idpool = self.spkrs.copy()403 # assert batch_size < len(self.idpool) #Metric learning assumption large num classes404 lens = [max_seq_len for _ in range(batch_size)]405 while True:406 batch_ids = np.random.choice(self.idpool, size=batch_size)407 batch_fpaths = []408 batch_utts = []409 for i in batch_ids:410 utt = np.random.choice(self.spk_utt_dict[i])411 batch_utts.append(utt)412 batch_fpaths.append(self.utt_fpath_dict[utt])413 if self.asynchr:414 batch_feats = async_map(get_item_train, zip(batch_fpaths, lens))415 else:416 batch_feats = [self.get_item(a) for a in zip(batch_fpaths, lens)]417 # batch_feats = parallel(delayed(self.get_item)(a) for a in zip(batch_fpaths, lens))418 label_dict = {}419 if "speaker" in self.label_types:420 label_dict["speaker"] = (421 torch.LongTensor(batch_ids) if sp_tensor else batch_ids422 )423 if "nationality" in self.label_types:424 label_dict["nationality"] = torch.LongTensor(425 [self.spk_nat_dict[s] for s in batch_ids]426 )427 if "gender" in self.label_types:428 label_dict["gender"] = torch.LongTensor(429 [self.spk_gen_dict[s] for s in batch_ids]430 )431 if "age" in self.label_types:432 label_dict["age"] = torch.LongTensor(433 [self.utt_age_class_dict[u] for u in batch_utts]434 )435 if "age_regression" in self.label_types:436 label_dict["age_regression"] = torch.FloatTensor(437 [self.utt_age_dict[u] for u in batch_utts]438 )439 if "rec" in self.label_types:440 label_dict["rec"] = torch.LongTensor(441 [self.utt_rec_dict[u] for u in batch_utts]442 )443 if "genre" in self.label_types:444 label_dict["genre"] = torch.LongTensor(445 [self.utt_genre_dict[u] for u in batch_utts]446 )447 yield torch.stack(batch_feats), label_dict448 def get_batches_balance(449 self, balance_attribute="speaker", batch_size=256, max_seq_len=400450 ):451 """452 Main data iterator, specify batch_size and max_seq_len453 Specify which attribute to balance454 """455 assert balance_attribute in self.label_types456 if balance_attribute == "speaker":457 self.anchorpool = self.spkrs.copy()458 self.get_utt_method = lambda x: np.random.choice(self.spk_utt_dict[x])459 if balance_attribute == "nationality":460 self.anchorpool = sorted(list(set(self.nats)))461 self.nat_utt_dict = OrderedDict({k: [] for k in self.anchorpool})462 for u in self.utt_list:463 spk = self.utt_spkr_dict[u]464 nat = self.spk_nat_dict[spk]465 self.nat_utt_dict[nat].append(u)466 for n in self.nat_utt_dict:467 self.nat_utt_dict[u] = np.array(self.nat_utt_dict[u])468 self.get_utt_method = lambda x: np.random.choice(self.nat_utt_dict[x])469 if balance_attribute == "age":470 self.anchorpool = sorted(list(set(self.age_classes)))471 self.age_utt_dict = OrderedDict({k: [] for k in self.anchorpool})472 for u in self.utt_age_class_dict:473 nat_class = self.utt_age_class_dict[u]474 self.age_utt_dict[nat_class].append(u)475 for a in self.age_utt_dict:476 self.age_utt_dict[a] = np.array(self.age_utt_dict[a])477 self.get_utt_method = lambda x: np.random.choice(self.age_utt_dict[x])478 lens = [max_seq_len for _ in range(batch_size)]479 while True:480 anchors = np.random.choice(self.anchorpool, size=batch_size)481 batch_utts = [self.get_utt_method(a) for a in anchors]482 batch_fpaths = []483 batch_ids = []484 for utt in batch_utts:485 batch_fpaths.append(self.utt_fpath_dict[utt])486 batch_ids.append(self.utt_spkr_dict[utt])487 if self.asynchr:488 batch_feats = async_map(get_item_train, zip(batch_fpaths, lens))489 else:490 batch_feats = [self.get_item(a) for a in zip(batch_fpaths, lens)]491 label_dict = {}492 if "speaker" in self.label_types:493 label_dict["speaker"] = torch.LongTensor(batch_ids)494 if "nationality" in self.label_types:495 label_dict["nationality"] = torch.LongTensor(496 [self.spk_nat_dict[s] for s in batch_ids]497 )498 if "gender" in self.label_types:499 label_dict["gender"] = torch.LongTensor(500 [self.spk_gen_dict[s] for s in batch_ids]501 )502 if "age" in self.label_types:503 label_dict["age"] = torch.LongTensor(504 [self.utt_age_class_dict[u] for u in batch_utts]505 )506 if "age_regression" in self.label_types:507 label_dict["age_regression"] = torch.FloatTensor(508 [self.utt_age_dict[u] for u in batch_utts]509 )510 if "rec" in self.label_types:511 label_dict["rec"] = torch.LongTensor(512 [self.utt_rec_dict[u] for u in batch_utts]513 )514 if "genre" in self.label_types:515 label_dict["genre"] = torch.LongTensor(516 [self.utt_genre_dict[u] for u in batch_utts]517 )518 yield torch.stack(batch_feats), label_dict519 def get_alldata_batches(self, batch_size=256, max_seq_len=400):520 utt_list = self.utt_list521 start_index = 0522 lens = [max_seq_len for _ in range(batch_size)]523 while start_index <= len(utt_list):524 batch_utts = utt_list[start_index : start_index + batch_size]525 batch_fpaths = []526 batch_ids = []527 for utt in batch_utts:528 batch_fpaths.append(self.utt_fpath_dict[utt])529 batch_ids.append(self.utt_spkr_dict[utt])530 if self.asynchr:531 batch_feats = async_map(get_item_train, zip(batch_fpaths, lens))532 else:533 batch_feats = [self.get_item(a) for a in zip(batch_fpaths, lens)]...

Full Screen

Full Screen

load_dataset.py

Source:load_dataset.py Github

copy

Full Screen

1import csv2import numpy as np3import os4import sys5import pickle6# BASE PATH DEFINITIONS7DATA_BASE_PATH = '.'8OUTPUT_BASE_PATH = '.'9default_FileName_PositiveInstancesDictionnary = os.path.join(DATA_BASE_PATH, "dictionnaries_and_lists/SmallMolMWFilter_UniprotHumanProt_DrugBank_Dictionary.csv")10default_FileName_ListProt = os.path.join(DATA_BASE_PATH, "dictionnaries_and_lists/list_MWFilter_UniprotHumanProt.txt")11default_FileName_ListMol = os.path.join(DATA_BASE_PATH, "dictionnaries_and_lists/list_MWFilter_mol.txt")12default_FileName_MolKernel = os.path.join(DATA_BASE_PATH, "kernels/kernels.data/Tanimoto_d=8_DrugBankSmallMolMWFilterHuman.data")13default_FileName_DicoMolKernel_indice2instance = os.path.join(DATA_BASE_PATH, "kernels/dict/dico_indice2mol_InMolKernel.data")14default_FileName_DicoMolKernel_instance2indice = os.path.join(DATA_BASE_PATH, "kernels/dict/dico_mol2indice_InMolKernel.data")15def load_dataset(FileName_PositiveInstancesDictionnary=default_FileName_PositiveInstancesDictionnary, FileName_ListProt=default_FileName_ListProt, FileName_ListMol=default_FileName_ListMol, FileName_MolKernel=default_FileName_MolKernel, FileName_DicoMolKernel_indice2instance=default_FileName_DicoMolKernel_indice2instance, FileName_DicoMolKernel_instance2indice=default_FileName_DicoMolKernel_instance2indice):16 """17 Loading the dataset and the molecule kernel18 :param FileName_PositiveInstancesDictionnary: (string) tsv file name: each line corresponds to a molecule; 19 1rst column: gives the DrugBank ID of the molecule20 2nd column: gives the number of targets of the corresponding molecule21 other columns: gives the UniprotIDs of molecule targets (one per column)22 :param FileName_ListProt: (string) txt file name: each line gives the UniprotID of a protein of the dataset23 :param FileName_ListMol: (string) txt file name: each line gives the DrugBankID of a molecule of the dataset24 :param FileName_kernel: (string) pickle file name: contains the molecule kernel (np.array)25 :param FileName_DicoKernel_indice2instance: (string) pickle file name: contains the dictionnary linking indices of the molecule kernel26 to its corresponding molecule ID27 :param FileName_DicoKernel_instance2indice: (string) pickle file name: contains the dictionnary linking molecule IDs to indices 28 in the molecule kernel29 30 :return K_mol: (np.array: number of mol^2) molecule kernel31 :return DicoMolKernel_ind2mol: (dictionnary) keys are indices of the molecule kernel (i.e. integers between 0 and number_of_mol)32 and corresponding values are DrugbankIDS of the molecule corresponding to the index33 :return DicoMolKernel_mol2ind: (dictionnary) keys are DrugbankIDs and values are their corresponding indices of the molecule kernel34 :return interaction_matrix: (np.array: number_of_mol*number_of_prot) array whose values are 1 if the molecule/protein couple35 is interaction or 0 otherwise36 """37 ##loading molecule kernel and its associated dictionnaries38 with open(FileName_MolKernel, 'rb') as fichier:39 pickler = pickle.Unpickler(fichier)40 K_mol = pickler.load().astype(np.float32)41 with open(FileName_DicoMolKernel_indice2instance, 'rb') as fichier:42 pickler = pickle.Unpickler(fichier)43 DicoMolKernel_ind2mol = pickler.load()44 with open(FileName_DicoMolKernel_instance2indice, 'rb') as fichier:45 pickler = pickle.Unpickler(fichier)46 DicoMolKernel_mol2ind = pickler.load()47 48 ##charging protein list of dataset49 list_prot_of_dataset = []50 f_in = open(FileName_ListProt, 'r')51 for line in f_in:52 list_prot_of_dataset.append(line.rstrip())53 f_in.close()54 ##charging list_mol_of_dataset55 list_mol_of_dataset = []56 f_in = open(FileName_ListMol, 'r')57 for line in f_in:58 list_mol_of_dataset.append(line.rstrip())59 f_in.close()60 ##charging list of targets per molecule of the dataset61 #initialization62 dico_targets_per_mol = {}63 for mol in list_mol_of_dataset:64 dico_targets_per_mol[mol] = []65 66 #filling67 f_in = open(FileName_PositiveInstancesDictionnary, 'r')68 reader = csv.reader(f_in, delimiter='\t')69 for row in reader:70 nb_prot = int(row[1])71 for j in range(nb_prot):72 dico_targets_per_mol[row[0]].append(row[2+j])73 del reader74 f_in.close()75 76 ##making interaction_matrix77 interaction_matrix = np.zeros((len(list_mol_of_dataset), len(list_prot_of_dataset)), dtype=np.float32)78 for i in range(len(list_mol_of_dataset)):79 list_of_targets = dico_targets_per_mol[list_mol_of_dataset[i]]80 nb=081 for j in range(len(list_prot_of_dataset)):82 if list_prot_of_dataset[j] in list_of_targets:83 interaction_matrix[i,j] = 184 nb+=185 ###FOR TESTING86 #if len(list_of_targets)!=nb:87 # print("alerte")88 # exit(1)89 90 return K_mol, DicoMolKernel_ind2mol, DicoMolKernel_mol2ind, interaction_matrix91###FOR TESTING 92#K_mol, DicoMolKernel_ind2mol, DicoMolKernel_mol2ind, interaction_matrix = load_dataset(FileName_PositiveInstancesDictionnary, FileName_ListProt, FileName_ListMol, FileName_MolKernel, FileName_DicoMolKernel_indice2instance, FileName_DicoMolKernel_instance2indice)93 94 95 96 97 ...

Full Screen

Full Screen

config.py

Source:config.py Github

copy

Full Screen

1import os23DATA_BASE_PATH = "dataset"45FILE_NAME1 = os.path.sep.join([DATA_BASE_PATH, "conllpp_dev.txt"])6FILE_NAME2 = os.path.sep.join([DATA_BASE_PATH, "conllpp_test.txt"])7FILE_NAME3 = os.path.sep.join([DATA_BASE_PATH, "conllpp_train.txt"])8910NEW_FILE_NAME1 = os.path.sep.join([DATA_BASE_PATH, "conllpp_dev.csv"])11NEW_FILE_NAME2 = os.path.sep.join([DATA_BASE_PATH, "conllpp_test.csv"])12NEW_FILE_NAME3 = os.path.sep.join([DATA_BASE_PATH, "conllpp_train.csv"])131415UP_FILE_NAME1 = os.path.sep.join([DATA_BASE_PATH, "conllpp_up_dev.csv"])16UP_FILE_NAME2 = os.path.sep.join([DATA_BASE_PATH, "conllpp_up_test.csv"])17UP_FILE_NAME3 = os.path.sep.join([DATA_BASE_PATH, "conllpp_up_train.csv"])181920CHECKPOINT_PATH = "checkpoint"2122CHECKPOINT1 = os.path.sep.join([CHECKPOINT_PATH, "checkpoint_saved.pth"])23CHECKPOINT2 = os.path.sep.join([CHECKPOINT_PATH, "checkpoint.pth"])24CHECKPOINT3 = os.path.sep.join([CHECKPOINT_PATH, "model_scripted.pt"])2526CHECKPOINT4 = os.path.sep.join([CHECKPOINT_PATH, "model_last.pt"]) ...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run pytest-play automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful