How to use test_rf method in pytest-django

Best Python code snippet using pytest-django_python

Libertas.py

Source:Libertas.py Github

copy

Full Screen

1import pandas as pd2import numpy as np 3from sklearn import preprocessing4from sklearn.feature_extraction import DictVectorizer5from sklearn.preprocessing import LabelEncoder6from sklearn.ensemble import RandomForestRegressor7from sklearn.ensemble import BaggingRegressor8import xgboost as xgb9 10def xgboost_pred(train,labels,test):11 params = {}12 params["objective"] = "count:poisson"13 params["eta"] = 0.00514 params["min_child_weight"] = 615 params["subsample"] = 0.716 params["colsample_bytree"] = 0.717 params["scale_pos_weight"] = 118 params["silent"] = 119 params["max_depth"] = 920 21 22 plst = list(params.items())23 #Using 4000 rows for early stopping. 24 offset = 400025 num_rounds = 1000026 xgtest = xgb.DMatrix(test)27 #create a train and validation dmatrices 28 xgtrain = xgb.DMatrix(train[offset:,:], label=labels[offset:])29 xgval = xgb.DMatrix(train[:offset,:], label=labels[:offset])30 #train using early stopping and predict31 watchlist = [(xgtrain, 'train'),(xgval, 'val')]32 model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=120)33 preds1 = model.predict(xgtest,ntree_limit=model.best_iteration)34 #reverse train and labels and use different 4k for early stopping. 35 train = train[::-1,:]36 labels = np.log(labels[::-1])37 xgtrain = xgb.DMatrix(train[offset:,:], label=labels[offset:])38 xgval = xgb.DMatrix(train[:offset,:], label=labels[:offset])39 watchlist = [(xgtrain, 'train'),(xgval, 'val')]40 model = xgb.train(plst, xgtrain, num_rounds, watchlist, early_stopping_rounds=120)41 preds2 = model.predict(xgtest,ntree_limit=model.best_iteration)42 #combine predictions43 #since the metric only cares about relative rank we don't need to average44 print "preds1 -> ", preds1 * 0.545 print "preds2 -> ", np.exp(preds2)*0.5, "\n"46 preds = (preds1)*0.5 + np.exp(preds2)*0.547 return preds48def xgboost_Label(train,test,labels):49 print("Train & Test xgboost_Label")50 train.drop('T2_V10', axis=1, inplace=True)51 train.drop('T2_V7', axis=1, inplace=True)52 train.drop('T1_V13', axis=1, inplace=True)53 train.drop('T1_V10', axis=1, inplace=True)54 test.drop('T2_V10', axis=1, inplace=True)55 test.drop('T2_V7', axis=1, inplace=True)56 test.drop('T1_V13', axis=1, inplace=True)57 test.drop('T1_V10', axis=1, inplace=True)58 train = np.array(train)59 test = np.array(test)60 for i in range(train.shape[1]):61 lbl = preprocessing.LabelEncoder()62 lbl.fit(list(train[:,i]) + list(test[:,i]))63 train[:,i] = lbl.transform(train[:,i])64 test[:,i] = lbl.transform(test[:,i])65 train = train.astype(float)66 test = test.astype(float)67 preds = xgboost_pred(train,labels,test)68 return preds69def xgboost_Vect(train,test,labels):70 print("Train & Test xgboost_Vect")71 test = test.T.to_dict().values()72 train = train.T.to_dict().values()73 vec = DictVectorizer()74 train = vec.fit_transform(train)75 test = vec.transform(test)76 preds = xgboost_pred(train,labels,test)77 return preds78def xgboost_Dummies(train,test,labels):79 print("Train & Test xgboost_Dummies")80 train = pd.get_dummies(train)81 test = pd.get_dummies(test)82 preds = xgboost_pred(train.values,labels,test.values)83 return preds84if __name__ == '__main__':85 #load train and test 86 print("Chargement des donnees")87 train = pd.read_csv('train.csv', index_col=0)88 test = pd.read_csv('test.csv', index_col=0)89 labels = train.Hazard90 train.drop('Hazard', axis=1, inplace=True)91 ############ RF LABEL #################92 train_rf = train.copy()93 test_rf = test.copy()94 train_rf.drop('T2_V10', axis=1, inplace=True)95 train_rf.drop('T2_V7', axis=1, inplace=True)96 train_rf.drop('T1_V13', axis=1, inplace=True)97 train_rf.drop('T1_V10', axis=1, inplace=True)98 test_rf.drop('T2_V10', axis=1, inplace=True)99 test_rf.drop('T2_V7', axis=1, inplace=True)100 test_rf.drop('T1_V13', axis=1, inplace=True)101 test_rf.drop('T1_V10', axis=1, inplace=True)102 train_rf = np.array(train_rf)103 test_rf = np.array(test_rf)104 for i in range(train_rf.shape[1]):105 lbl = LabelEncoder()106 lbl.fit(list(train_rf[:,i]))107 train_rf[:,i] = lbl.transform(train_rf[:,i])108 for i in range(test_rf.shape[1]):109 lbl = LabelEncoder()110 lbl.fit(list(test_rf[:,i]))111 test_rf[:,i] = lbl.transform(test_rf[:,i])112 train_rf = train_rf.astype(float)113 test_rf = test_rf.astype(float)114 ############# RF DUMMIES ##############115 train_du = train.copy()116 test_du = test.copy()117 train_du.drop('T2_V10', axis=1, inplace=True)118 train_du.drop('T2_V7', axis=1, inplace=True)119 train_du.drop('T1_V13', axis=1, inplace=True)120 train_du.drop('T1_V10', axis=1, inplace=True)121 test_du.drop('T2_V10', axis=1, inplace=True)122 test_du.drop('T2_V7', axis=1, inplace=True)123 test_du.drop('T1_V13', axis=1, inplace=True)124 test_du.drop('T1_V10', axis=1, inplace=True)125 train_du = pd.get_dummies(train_du)126 test_du = pd.get_dummies(test_du)127 algorithms = [128 [RandomForestRegressor(n_estimators=2048, max_depth=18, min_samples_split=4, min_samples_leaf=20), "labels"],129 [RandomForestRegressor(n_estimators=2048, max_depth=22, min_samples_split=4, min_samples_leaf=20), "dummies"],130 ["xgboost_Dummies", ""],131 ["xgboost_Label", ""],132 ["xgboost_Vect", ""]133 ]134 full_predictions = []135 for alg, predictors in algorithms:136 if(alg == "xgboost_Label"):137 full_predictions.append(xgboost_Label(train, test, labels))138 elif(alg == "xgboost_Vect"):139 full_predictions.append(xgboost_Vect(train, test, labels))140 elif(alg == "xgboost_Dummies"):141 full_predictions.append(xgboost_Dummies(train, test, labels))142 else :143 if(predictors == "dummies"):144 print("Train ", alg.__class__.__name__ , " dummies Model ")145 alg=BaggingRegressor(alg)146 alg.fit(train_du, labels)147 print 'Prediction :' , alg.__class__.__name__ , ' dummies Model '148 prediction = alg.predict(test_du)149 full_predictions.append(prediction)150 else :151 print("Train ", alg.__class__.__name__ , " Label Model ")152 alg=BaggingRegressor(alg)153 alg.fit(train_rf, labels)154 print 'Prediction :' , alg.__class__.__name__ , ' Label Model '155 prediction = alg.predict(test_rf)156 full_predictions.append(prediction)157 # Ensemble models158 RF_label_pred = full_predictions[0]159 RF_dummies_pred = full_predictions[1]160 pred_xgb_dummies = full_predictions[2]161 pred_xgb_Label = full_predictions[3]162 pred_xgb_Vect = full_predictions[4]163 pred_RF = RF_dummies_pred * 0.50 + RF_label_pred * 0.50 164 pred_xgb = pred_xgb_dummies * 0.45 + pred_xgb_Label * 0.28 + pred_xgb_Vect * 0.27 165 preds = pred_RF * 0.15 + pred_xgb * 0.85 166 #generate solution167 print("Construction csv")168 preds = pd.DataFrame({"Id": test.index, "Hazard": preds})169 preds = preds.set_index('Id')...

Full Screen

Full Screen

rf_moving_pre_arrive_test.py

Source:rf_moving_pre_arrive_test.py Github

copy

Full Screen

1#!/usr/bin/env python32import test_rf3import time4import argparse5import socket6def main():7 parser = argparse.ArgumentParser(description="rf arguments")8 parser.add_argument("gateway_ip", help="ip address of gateway", type=str)9 parser.add_argument("gateway_port", help="port of gateway", type=int)10 parser.add_argument("rf_address", help="rf address", type=str)11 parser.add_argument("test_times", help="how many times to test", type=int)12 parser.add_argument("target_pos", help="absolute target in counts in hex", type=str)13 parser.add_argument("velocity", help="velocity in counts/s", type=int)14 parser.add_argument("is_destination", help="0 - not | 1 - is dest", type=int)15 parser.add_argument("is_vertical", help="0 - horizontal | 1 - vertical", type=int)16 parser.add_argument("pre_arrive_count", help="pre arrive distance in counts", type=int)17 parser.add_argument("is_sensor_triggered", help="0 - no sensor | 1 - has sensor", type=int)18 gateway = parser.parse_args().gateway_ip19 port = parser.parse_args().gateway_port20 rf_addr = parser.parse_args().rf_address21 test = parser.parse_args().test_times22 pos = parser.parse_args().target_pos23 vel = parser.parse_args().velocity24 is_dest = parser.parse_args().is_destination25 is_vert = parser.parse_args().is_vertical26 pre_arrive = parser.parse_args().pre_arrive_count27 is_sensor = parser.parse_args().is_sensor_triggered28 recv_count = 029 timeout_count = 030 error_count = 031 test_rf.serverAddressPort = (gateway, port)32 test_rf.rf = rf_addr33 test_rf.moving_pre_arrive_count = pre_arrive34 for x in range(test):35 test_rf.error_count = 036 res = test_rf.moving(pos, vel, is_dest, is_vert, is_sensor)37 if res[0] == "received":38 recv_count += 139 if res[0] == "timeout":40 timeout_count += 141 error_count += res[1]42 print("{} {} {}".format(recv_count, timeout_count, error_count), end="")43if __name__ == "__main__":...

Full Screen

Full Screen

rf_ping.py

Source:rf_ping.py Github

copy

Full Screen

1#!/usr/bin/env python32import test_rf3import time4import argparse5import socket6def main():7 parser = argparse.ArgumentParser(description="rf arguments")8 parser.add_argument("gateway_ip", help="ip address of gateway", type=str)9 parser.add_argument("gateway_port", help="port of gateway", type=str)10 parser.add_argument("rf_address", help="rf address", type=str)11 parser.add_argument("test_times", help="how many times to test", type=str)12 parser.add_argument("ping_operation", help="0 - read | 1 - online", type=str)13 gateway = parser.parse_args().gateway_ip14 port = int(parser.parse_args().gateway_port)15 rf_addr = parser.parse_args().rf_address16 sub = int(parser.parse_args().ping_operation)17 test = int(parser.parse_args().test_times)18 recv_count = 019 timeout_count = 020 error_count = 021 test_rf.serverAddressPort = (gateway, port)22 test_rf.rf = rf_addr23 for x in range(test):24 test_rf.error_count = 025 res = test_rf.ping(sub)26 if res[0] == "received":27 recv_count += 128 if res[0] == "timeout":29 timeout_count += 130 error_count += res[1]31 print("{} {} {}".format(recv_count, timeout_count, error_count), end="")32if __name__ == "__main__":...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run pytest-django automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful