Best Python code snippet using pyatom_python
compare_reward.py
Source:compare_reward.py
1import numpy as np2import os3from nltk import PorterStemmer, word_tokenize, sent_tokenize4from nltk.corpus import stopwords5from tqdm import tqdm6from scipy.stats import spearmanr, pearsonr, kendalltau7from pytorch_transformers import *8from sklearn.metrics.pairwise import cosine_similarity9from sentence_transformers import SentenceTransformer10import argparse1112from scorer.data_helper.json_reader import read_sorted_scores, read_articles, read_processed_scores, read_scores13from helpers.data_helpers import sent2stokens_wostop, sent2tokens_wostop, sent2stokens, text_normalization14from scorer.auto_metrics.metrics import bleu, meteor15from resources import RUNS_DIR, ROUGE_DIR, BASE_DIR, MODEL_WEIGHT_DIR16from scorer.auto_metrics.rouge.rouge import RougeScorer17from step1_encode_doc_summ import raw_bert_encoder18from rewarder import Rewarder1920def sts_bert_encoder(model, sent_list):21 if not isinstance(sent_list,list):22 assert isinstance(sent_list,str)23 sent_list = sent_tokenize(sent_list)24 vecs = model.encode(sent_list)25 return vecs262728def sts_bert_rewarder(model, text1, text2):29 vec_list1 = sts_bert_encoder(model,text1)30 vec_list2 = sts_bert_encoder(model,text2)31 avg_vec1 = np.mean(vec_list1,axis=0)32 avg_vec2 = np.mean(vec_list2,axis=0)33 return cosine_similarity(avg_vec1.reshape(1, -1), avg_vec2.reshape(1, -1))[0][0]343536def raw_bert_rewarder(model, tokenizer, text1, text2):37 v1 = raw_bert_encoder(model,tokenizer,[text1])38 v2 = raw_bert_encoder(model,tokenizer,[text2])39 return cosine_similarity(v1.reshape(1, -1), v2.reshape(1, -1))[0][0]404142def evaluate_metric(metric, stem, remove_stop, with_ref, prompt='overall'):43 ''' metrics that use reference summaries '''44 assert metric in ['ROUGE-1-F', 'ROUGE-1-R', 'ROUGE-2-F', 'ROUGE-2-R', 'ROUGE-L-F', 'ROUGE-L-R', 'ROUGE-SU*-F',45 'ROUGE-SU*-R', 'bleu-1', 'bleu-2', 'bleu-3', 'bleu-4', 'bleu-5', 'meteor',46 'infersent', 'bert-raw','bert-sts','bert-nli','bert-human','mover-1', 'mover-2', 'mover-smd']47 stemmed_str = "_stem" if stem else ""48 stop_str = "_removestop" if remove_stop else ""49 if with_ref:50 ranks_file_path = os.path.join('outputs', 'wref_{}{}{}_{}_rank_correlation.csv'.format(metric, stemmed_str, stop_str, prompt))51 else:52 ranks_file_path = os.path.join('outputs', 'woref_{}{}{}_{}_rank_correlation.csv'.format(metric, stemmed_str, stop_str, prompt))53 print('\n====={}=====\n'.format(ranks_file_path))5455 #if os.path.isfile(ranks_file_path):56 #return ranks_file_path5758 ranks_file = open(ranks_file_path, 'w')59 ranks_file.write('article,summ_id,human_score,metric_score\n')6061 sorted_scores = read_sorted_scores()62 input_articles, _ = read_articles()63 corr_data = np.zeros((len(sorted_scores), 3))6465 stopwords_list = set(stopwords.words("english"))66 stemmer = PorterStemmer()6768 if metric.startswith('infersent'):69 from scorer.auto_metrics.infersent_metric import InferSentScorer70 infers = InferSentScorer()71 elif metric.startswith('sent2vec'):72 from scorer.auto_metrics.sent2vec_metric import Sent2Vec73 s2v = Sent2Vec()74 elif metric.startswith('bert'):75 pass76 if 'human' in metric:77 rewarder = Rewarder(os.path.join(MODEL_WEIGHT_DIR,'sample.model'))78 elif 'sts' in metric:79 bert_model = SentenceTransformer('bert-large-nli-stsb-mean-tokens')80 elif 'nli' in metric:81 bert_model = SentenceTransformer('bert-large-nli-mean-tokens')82 else:83 #raw BERT84 bert_tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')85 bert_model = BertModel.from_pretrained('bert-large-uncased')86 elif metric.startswith('mover'):87 print('Make sure that your have started the mover server. Find details at https://github.com/AIPHES/emnlp19-moverscore.')88 from summ_eval.client import EvalClient89 mover_scorer = EvalClient()9091 for i, (article_id, scores_list) in tqdm(enumerate(sorted_scores.items())):92 human_ranks = [s['scores'][prompt] for s in scores_list]93 if len(human_ranks) < 2: continue94 ref_summ = scores_list[0]['ref']95 article = [entry['article'] for entry in input_articles if entry['id']==article_id][0]9697 if stem and remove_stop:98 sys_summs = [" ".join(sent2stokens_wostop(s['sys_summ'], stemmer, stopwords_list, 'english', True)) for s in scores_list]99 ref_summ = " ".join(sent2stokens_wostop(ref_summ, stemmer, stopwords_list, 'english', True))100 article = " ".join(sent2stokens_wostop(article, stemmer, stopwords_list, 'english', True))101 elif not stem and remove_stop:102 sys_summs = [" ".join(sent2tokens_wostop(s['sys_summ'], stopwords_list, 'english', True)) for s in scores_list]103 ref_summ = " ".join(sent2tokens_wostop(ref_summ, stopwords_list, 'english', True))104 article = " ".join(sent2tokens_wostop(article, stopwords_list, 'english', True))105 elif not remove_stop and stem:106 sys_summs = [" ".join(sent2stokens(s['sys_summ'], stemmer, 'english', True)) for s in scores_list]107 ref_summ = " ".join(sent2stokens(ref_summ, stemmer, 'english', True))108 article = " ".join(sent2stokens(article, stemmer, 'english', True))109 else:110 sys_summs = [s['sys_summ'] for s in scores_list]111112 summ_ids = [s['summ_id'] for s in scores_list]113 sys_summs = [text_normalization(s) for s in sys_summs]114 ref_summ = text_normalization(ref_summ)115 article = text_normalization(article)116117 if 'rouge' in metric.lower():118 auto_metric_ranks = []119 for ss in sys_summs:120 rouge_scorer = RougeScorer(ROUGE_DIR,BASE_DIR)121 if with_ref: auto_metric_ranks.append(rouge_scorer(ss, ref_summ)[metric])122 else: auto_metric_ranks.append(rouge_scorer(ss, article)[metric])123 elif metric.startswith('bleu'):124 n = int(metric.split('-')[1])125 if with_ref: auto_metric_ranks = [bleu(ss, [ref_summ], n, smooth=False) for ss in sys_summs]126 else: auto_metric_ranks = [bleu(ss, [article], n, smooth=False) for ss in sys_summs]127 elif metric.startswith('meteor'):128 if with_ref: auto_metric_ranks = [meteor(ss, [ref_summ]) for ss in sys_summs]129 else: auto_metric_ranks = [meteor(ss, [article]) for ss in sys_summs]130 elif metric.startswith('infersent'):131 if with_ref: auto_metric_ranks = [infers(ss, ref_summ) for ss in sys_summs]132 else: auto_metric_ranks = [infers(ss, article) for ss in sys_summs]133 elif metric.startswith('sent2vec'):134 if with_ref: auto_metric_ranks = [s2v.score(ss, ref_summ) for ss in sys_summs]135 else: auto_metric_ranks = [s2v.score(ss, article) for ss in sys_summs]136 elif metric.startswith('bert'):137 if 'human' in metric:138 if with_ref: auto_metric_ranks = [rewarder(ref_summ,ss) for ss in sys_summs]139 else: auto_metric_ranks = [rewarder(article,ss) for ss in sys_summs]140 elif 'sts' in metric or 'nli' in metric:141 if with_ref: auto_metric_ranks = [sts_bert_rewarder(bert_model,ss,ref_summ) for ss in sys_summs]142 else: auto_metric_ranks = [sts_bert_rewarder(bert_model,ss,article) for ss in sys_summs]143 else: #raw BERT encoder144 if with_ref: auto_metric_ranks = [raw_bert_rewarder(bert_model,bert_tokenizer,ss,ref_summ) for ss in sys_summs]145 else: auto_metric_ranks = [raw_bert_rewarder(bert_model,bert_tokenizer,ss,article) for ss in sys_summs]146 elif metric.startswith('mover'):147 if '1' in metric: mm = 'wmd_1'148 elif '2' in metric: mm = 'wmd_2'149 else: mm = 'smd'150 if with_ref: cases = [ [[ss], [ref_summ], mm] for ss in sys_summs ]151 else: cases = [ [[ss], sent_tokenize(article), mm] for ss in sys_summs ]152 auto_metric_ranks = mover_scorer.eval(cases)['0']153154 for sid, amr, hr in zip(summ_ids, auto_metric_ranks, human_ranks):155 ranks_file.write('{},{},{:.2f},{:.4f}\n'.format(article_id, sid, hr, amr))156157 spearmanr_result = spearmanr(human_ranks, auto_metric_ranks)158 print(spearmanr_result[0])159 pearsonr_result = pearsonr(human_ranks, auto_metric_ranks)160 kendalltau_result = kendalltau(human_ranks, auto_metric_ranks)161 corr_data[i, :] = [spearmanr_result[0], pearsonr_result[0], kendalltau_result[0]]162163 corr_mean_all = np.nanmean(corr_data, axis=0)164 print('\n====={}=====\n'.format(ranks_file_path))165 print("Correlation mean on all data spearman/pearsonr/kendall: {}".format(corr_mean_all))166167 ranks_file.flush()168 ranks_file.close()169170 return ranks_file_path171172def parse_args():173 ap = argparse.ArgumentParser("arguments for summary sampler")174 ap.add_argument('-m','--metric',type=str,default='mover-1',choices=['ROUGE-1-F', 'ROUGE-1-R', 'ROUGE-2-F', 'ROUGE-2-R', 'ROUGE-L-F', 'ROUGE-L-R', 'ROUGE-SU*-F',175 'ROUGE-SU*-R', 'bleu-1', 'bleu-2', 'bleu-3', 'bleu-4', 'bleu-5', 'meteor',176 'infersent', 'bert-raw','bert-sts','bert-nli','bert-human', 'mover-1', 'mover-2', 'mover-smd'],help='compare which metric against the human judgements')177 ap.add_argument('-p','--prompt',type=str,default='overall',help='which human ratings you want to use as ground truth',choices=['overall','grammar'])178 ap.add_argument('-r','--with_ref',type=int,default=0,help='whether to use references in your metric; 1: yes, 0: no')179 ap.add_argument('-s','--stem',type=int,help='whether stem the texts before computing the metrics; 1 yes, 0 no')180 ap.add_argument('-rs','--remove_stop',type=int,help='whether remove stop words in texts before computing the metrics; 1 yes, 0 no')181 args = ap.parse_args()182 return args.metric, args.prompt, args.with_ref, args.stem, args.remove_stop183184185if __name__ == '__main__':186 metric, prompt, with_ref, stem, remove_stop = parse_args()187 with_ref = bool(with_ref)188 stem = bool(stem)189 remove_stop = bool(remove_stop)190191 print('\n=====Arguments====')192 print('metric: '+metric)193 print('prompt: '+prompt)194 print('with ref: '+repr(with_ref))195 print('stem: '+repr(stem))196 print('remove stopwords: '+repr(remove_stop))197 print('=====Arguments====\n')198
...
score.py
Source:score.py
...62 if isinstance(self.src, Variable):63 with self.src.open_for_read(out) as srcref:64 scaled, is_temp = self.dest.scale_other_to_this(self.src,65 srcref, out)66 out.write(self.with_ref(ref, scaled))67 if is_temp:68 out.free_temp(scaled)69 else:70 self.apply_const_src(ref, self.dest.to_int(self.src), out)71 if not self.is_additive:72 self.dest.scale_down(ref, out)73 def apply_const_src(self, ref, val, out):74 if val < 0 and self.with_neg_const is not None:75 out.write(self.with_neg_const(ref, -val))76 else:77 out.write(self.with_const(ref, val))78 def run(self, ev):79 assert isinstance(self.dest, CompilerVariable)80 if isinstance(self.src, Variable):81 assert isinstance(self.src, CompilerVariable)82 src = self.src.get_value()83 else:84 src = self.src85 self.dest.set_value(self.constfunc(self.dest.get_value(), src))86 def serialize(self, holder):87 dest, src = self.serialize_args(holder)88 return '%s %s %s' % (dest, self.with_ref.op, src)89 __op_lookup = {}90 @classmethod91 def lookup_by_op(cls, op):92 if not len(cls.__op_lookup):93 for clz in get_subclasses(cls):94 if hasattr(clz, 'with_ref'):95 cls.__op_lookup[clz.with_ref.op] = clz96 return cls.__op_lookup[op]97import operator98class OnlyRefOperationInsn(SimpleOperationInsn):99 def apply_const_src(self, ref, val, out):100 srcref = out.allocate_temp()101 out.write(c.SetConst(srcref, val))102 out.write(self.with_ref(ref, srcref))103 out.free_temp(srcref)104class AddScore(SimpleOperationInsn):105 with_ref = c.OpAdd106 with_const = c.AddConst107 with_neg_const = c.RemConst108 constfunc = operator.add109 identity = 0110 is_additive = True111class SubScore(SimpleOperationInsn):112 with_ref = c.OpSub113 with_const = c.RemConst114 with_neg_const = c.AddConst115 constfunc = operator.sub116 identity = 0...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!