Best Python code snippet using pyatom_python
evolve.py
Source:evolve.py
...192 if (not all([(isinstance(x, list) or isinstance(x, tuple)) and (len(x)==2) for x in indices])) and (len(indices) == 2):193 indices = [indices]194 assert all([(isinstance(x, list) or isinstance(x, tuple)) and (len(x)==2) for x in indices])195 return [self.sequences[g, c] for g, c in indices]196 def _generateChildren(self, generation_index, verbose=0, firstChild=0):197 # parallel generation of children within a single generation198 # call recombine survivors here since natural variation should not199 # replace structures from recombination...200 firstParent = self._propogateParent201 if firstParent: firstParent = self.parent202 with Parallel(backend='loky', n_jobs=self._nThreads, verbose=verbose) as parallel:203 results = parallel(delayed(_variationKernel)204 (205 filenames=self._findSurvivors(generation_index-1),206 workdir=self._workdir,207 generation_index=generation_index, 208 child_index=i, 209 sites=self._sites, 210 # seq_db=self.sequences, 211 # score_db=self.scores,212 mutationOpts={213 'degree': self._mutationDegree,214 'library': self._library,215 }, 216 refinementOpts=self._refinementOpts, 217 optimizationOpts=self._optimizationOpts, 218 retain_models=self._retain_models,219 percentRecombination=self._percentRecombination,220 firstParent=firstParent221 ) for i in range(firstChild, self._nChildren)222 )223 scores = []224 sequences = []225 for result in results:226 scores.append(result[0])227 sequences.append(result[1])228 self.scores[generation_index, firstChild:] = scores229 self.sequences[generation_index, firstChild:] = sequences230 with open(self._checkpoint, 'wb') as h:231 p.dump(self, h)232 return233 def _findSurvivors(self, generation_index):234 k = self._boltzmannFactor235 if generation_index < 0:236 return [self.parent]237 elif k > 0.:238 try:239 scores = self.scores[generation_index, :]240 p = boltzmann_p(scores, k=k)241 order = np.argsort(p)[::-1]242 total = np.asarray([np.sum(p[0:i+1]) for i in order], dtype=float)243 last_order_idx = np.argwhere(total >= self._survivalCutoff)[0][0]244 survivors = [order[i] for i in range(last_order_idx+1)]245 survivors = [mutant_filename_constructor(self._workdir, generation_index, x) for x in survivors]246 return survivors247 except:248 print('WARNING: could not calculate Boltzmann probabilities, only propagating most fit sequence')249 scores = self.scores[generation_index, :]250 indmin = np.argmin(scores)251 return [mutant_filename_constructor(self._workdir, generation_index, indmin)]252 elif k <= 0.:253 scores = self.scores[generation_index, :]254 indmin = np.argmin(scores)255 return [mutant_filename_constructor(self._workdir, generation_index, indmin)]256 def run(self, verbose=0):257 # if reset:258 # self.survivors = [self.parent]259 for i in range(self._nGenerations):260 if verbose != 0:261 print('*** Protean:Evolve - Generating and Evaluating Children for Generation %d ***' % (i))262 self._generateChildren(generation_index=i)263 # if verbose:264 # print('*** Protean:Evolve - Identifying Survivors for Generation %d ***' % i)265 # survivors = self._findSurvivors(generation_index=i)266 if verbose != 0:267 print('*** Protean:Evolve - Genetic Algorithm Complete! ***')268 self._notRun = False269 return270 def restart(self, verbose=0, generation_index=None, child_index=None):271 if generation_index is None:272 genMask = [any([x is None for x in self.sequences[i,:]]) for i in range(self._nGenerations)]273 genIdx = [i for i, flag in enumerate(genMask) if flag][0]274 else:275 genIdx = generation_index276 if child_index is None:277 childMask = [self.sequences[genIdx, j] is None for j in range(self._nChildren)]278 childIdx = [i for i, flag in enumerate(childMask) if flag][0]279 else:280 childIdx = child_index281 for i in range(genIdx, self._nGenerations):282 if verbose != 0:283 print('*** Protean:Evolve - Generating and Evaluating Children for Generation %d ***' % (i))284 if i == genIdx:285 self._generateChildren(generation_index=i, firstChild=childIdx)286 else:287 self._generateChildren(generation_index=i)288 if verbose != 0:289 print('*** Protean:Evolve - Genetic Algorithm Complete! ***')290 self._notRun = False291 return292 def p(self):293 p = boltzmann_p(self.scores[:,:], k=self._boltzmannFactor)294 return p295 def rank(self, n=0):296 # p = self.p(T=T)297 scores = self.scores298 order = np.argsort(scores, axis=None)#[::-1]299 indices = [(i, j) for i, j in zip(*np.unravel_index(order, dims=scores.shape))]300 if n <= 0:301 return indices...
DecisionTree.py
Source:DecisionTree.py
...93 self.classification = self.targetPlus94 else:95 self.classification = self.targetMinus96 # generateChildren can return all None if no children generated97 (branchAttr, children) = self._generateChildren()98 self.branchAttr = branchAttr # attribute for this node's split,99 self.children = children # dict mapping attr val to correct branch100 # children are also Node objs101 #=================================================================102 # Generating children and helpers103 #=================================================================104 def _entropy(self, examples):105 """calculate entropy of examples: H(Y)106 returns float"""107 nElems = float(len(examples))108 nPlusElems = sum( [1 for e in examples if (e[self.targetKey] == self.targetPlus)] )109 nMinusElems = nElems - nPlusElems110 probP = nPlusElems / nElems111 probM = nMinusElems / nElems112 # dealing with case of zero prob113 # entropy is 0 as one prob is 0 then the other is 1114 # and log2(1) = 0115 if (probM < FLOAT_EPSILON) or (probP< FLOAT_EPSILON):116 return 0.0117 return -probP * math.log(probP, 2) - probM * math.log(probM, 2)118 def _condEntropy(self, examples, attr):119 """calculate conditional entropy of examples: H(Y|A)120 returns float"""121 nElems = float(len(examples))122 splitExamples = self._split(examples, attr)123 # calculate entropy conditioned on attr values124 condEntropy = 0.0125 for val in splitExamples:126 probVal = len(splitExamples[val]) / nElems127 entropyCondOnVal = self._entropy(splitExamples[val])128 condEntropy += probVal * entropyCondOnVal129 return condEntropy130 def _mutualInfo(self, examples, attr):131 """determine the mutual information between the examples and the given attribute.132 I(Y;A) = H(Y) - H(Y|A) where Y is examples (data) and A is attribute. 133 returns float"""134 return self._entropy(examples) - self._condEntropy(examples, attr)135 def _split(self, examples, attr):136 """split the examples on an attribute's values (v1, v2, ...)137 returns {v1 : examples_v1, v2 : examples_v2, ...} """138 # split examples by attr values139 splitExamples = {}140 for ex in examples:141 val = ex[self.attrKey][attr]142 # add val as key in split examples143 if val not in splitExamples:144 splitExamples[val] = []145 # add example to split by attr val146 splitExamples[val].append(ex)147 return splitExamples148 def _generateChildren(self):149 """generate child nodes based on maximizing information gain.150 Returns (branchAttr, children) whose values can be None if no split"""151 # no children generated if at max depth or no more training examples or no more attributes152 if ( (self.depth == self.maxDepth) or (len(self.examples) == 0) or 153 (len(self.examples[0][self.attrKey]) == 0) ):154 return (None, None)155 # find attribute to branch on156 maxMutualInfo = 0.0 # mutual info is pos for these cases157 maxAttr = None158 # know at least one example from above conditional159 for attr in self.examples[0][self.attrKey]:160 mutualInfo = self._mutualInfo(self.examples, attr)161 # update maximum162 if mutualInfo >= maxMutualInfo:...
test.py
Source:test.py
...27 'restraintConstant': 5.0*unit.kilojoules/(unit.angstrom**2)28 }29 evolver = Evolve(parent=pdbfile, nGenerations=5, nChildren=5, atom_indices=indices, nThreads=1,30 optimizationOpts=optimizationOpts)31 # evolver._generateChildren(0, verbose=50)32 # survivors = evolver._findSurvivors(0)33 # print('These children survive:')34 # print(survivors)35 evolver.run(verbose=50)36 p.dump(evolver, open('evolver_object.p', 'wb'))37# if __name__ is "__main__":38# evolver = main()39# scores = evolver.scores[:,:]40# p = boltzmann_p(scores)41# idx = np.argmax(p)42# idx = np.unravel_index(idx, scores.shape)...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!