How to use get_summary method in prospector

Best Python code snippet using prospector_python

COBAYA_CONTOURS_DES3YR_UNBIN.py

Source: COBAYA_CONTOURS_DES3YR_UNBIN.py Github

copy

Full Screen

...35label_Chap, begin_Chap, legend_Chap = get_info(Chap.__name__)36#### PLOTS FOR DIFFERENT MODELS - NOTE PARAMS ARE SAVED AS: MODEL_PARAM - BESIDES FLCDM/​LCDM37### FLCDM - Used as a Scatter point on some plots38c.add_chain(FLCDM_COBAYA_CHAIN, parameters=label_FLCDM, linewidth=2.0, name="FLCDM", kde=1.5, color="blue").configure(summary=True, shade_alpha=0.2,statistics="max")39fom = c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][1]40fomp = c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][2]-c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][1]41fomm = c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][1]-c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][0]42c.remove_chain('FLCDM')43### LCDM PLOT & points which is sometimes used as a scatter point on some plots44fig, ax = plt.subplots(1, 1)45c.add_chain(LCDM_COBAYA_CHAIN, parameters=label_LCDM, linewidth=2.0, name="LCDM", kde=1.5, color="red",num_free_params=2).configure(summary=True, shade_alpha=0.2,statistics="max")46om = c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][1]47omp = c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][2]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][1]48omm = c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][1]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][0]49ol = c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][1]50olp =c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][2]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][1]51olm =c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][1]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][0]52c.plotter.plot_contour(ax,r'$\Omega_m$', r'$\Omega_{\Lambda}$')53ax.scatter(fom, 1-fom, marker = 'D', s = 50, c='black', label = r'Flat $\Lambda$')54ax.text(1.15,0.55,'$\Omega_m = %10.5s\pm{%10.5s}$' %(om,omp), family='serif',color='black',rotation=0,fontsize=12,ha='right') 55ax.text(1.15,0.4,'$\Omega_{\Lambda} = %10.5s\pm{%10.5s}$' %(ol,olp), family='serif',color='black',rotation=0,fontsize=12,ha='right')56ax.set_xlabel(r'$\Omega_m$', fontsize = 18)57ax.set_ylabel(r'$\Omega_{\Lambda}$', fontsize = 18) 58#ax.set_xlim(0,1.2)59#ax.set_ylim(0.48,1.06)60plt.minorticks_on()61ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")62ax.legend(loc='upper right',frameon=False,fontsize=12)63plt.close()64#plt.show()65c.remove_chain('LCDM')66### FwCDM PLOT67name = FwCDM.__name__68c.add_chain(FwCDM_COBAYA_CHAIN[200:], parameters=label_FwCDM, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_FwCDM)).configure(summary=True, shade_alpha=0.2,statistics="max")69# Gets best fit and plus/​minus error70FwCDM_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]71FwCDM_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]72FwCDM_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]73FwCDM_w = c.analysis.get_summary(chains=name)[r'$\omega$'][1]74FwCDM_wp =c.analysis.get_summary(chains=name)[r'$\omega$'][2]-c.analysis.get_summary(chains=name)[r'$\omega$'][1]75FwCDM_wm =c.analysis.get_summary(chains=name)[r'$\omega$'][1]-c.analysis.get_summary(chains=name)[r'$\omega$'][0]76fig, ax = plt.subplots(1, 1)77# Unique to this plot - plotting FLCDM best fit param78ax.scatter(fom, -1, marker = 'D', s = 50, c='black', label = r'Flat $\Lambda$')79# Selectings which params to plot and on what axis80c.plotter.plot_contour(ax, *label_FwCDM) 81# Unique to FwCDM model82ax.text(0.12,-1.75,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(FwCDM_om,FwCDM_omp,FwCDM_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 83ax.text(0.12,-1.75-0.15,'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(FwCDM_w,FwCDM_wp,FwCDM_wm), family='serif',color='black',rotation=0,fontsize=12,ha='left')84ax.set_xlabel(r'$\Omega_m$', fontsize = 18)85ax.set_ylabel(r'$\omega$', fontsize = 18)86# Plot limits87#ax.set_xlim(0.20,0.5)88#ax.set_ylim(0.48,1.06)89plt.minorticks_on()90ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")91ax.legend(loc='upper right',frameon=False,fontsize=12)92plt.close()93#plt.show()94c.remove_chain('FwCDM')95### wCDM PLOT96name = wCDM.__name__97c.add_chain(wCDM_COBAYA_CHAIN[1000:], parameters=label_wCDM, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_wCDM)).configure(summary=True, shade_alpha=0.2,statistics="max")98# Gets best fit and plus/​minus error 99wCDM_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]100wCDM_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]101wCDM_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]102wCDM_ol = c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][1]103wCDM_olp = c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][1]104wCDM_olm = c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][0]105wCDM_o = c.analysis.get_summary(chains=name)[r'$\omega$'][1]106wCDM_op =c.analysis.get_summary(chains=name)[r'$\omega$'][2]-c.analysis.get_summary(chains=name)[r'$\omega$'][1]107wCDM_omi =c.analysis.get_summary(chains=name)[r'$\omega$'][1]-c.analysis.get_summary(chains=name)[r'$\omega$'][0]108fig, ax = plt.subplots(1, 1)109# Selectings which params to plot and on what axis110c.plotter.plot_contour(ax, r'$\Omega_m$', r"$\omega$")111# Unique to this plot - plotting LCDM best fit param112ax.scatter(om, -1, marker = 'X', s = 60, c='red', label = r'$\Lambda$')113# Unique to model114ax.text(1.1,-1.65,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(wCDM_om,wCDM_omp,wCDM_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 115ax.text(1.1,-1.65-0.13,'$\Omega_{\Lambda} = %10.5s^{%10.5s}_{%10.5s}$' %(wCDM_ol,wCDM_olp,wCDM_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')116ax.text(1.1,-1.65-0.26,'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(wCDM_o,wCDM_op,wCDM_omi), family='serif',color='black',rotation=0,fontsize=12,ha='right')117ax.set_xlabel(r'$\Omega_m$', fontsize = 18)118ax.set_ylabel(r'$\omega$', fontsize = 18)119# Plot limits120#ax.set_xlim(0.20,0.6)121#ax.set_ylim(-2,-0.5)122#ax.set_xticklabels(['0.2','','0.3','','0.4','','0.5','','0.6'])123#ax.set_yticklabels(['','-1.8','','-1.4','','-1.0','','-0.6'])124plt.minorticks_on()125ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")126ax.legend(loc='upper right',frameon=False,fontsize=12)127plt.close()128c.remove_chain('wCDM')129### Fwa PLOT130name = Fwa.__name__131# The actualchain this code is about132c.add_chain(Fwa_COBAYA_CHAIN[1000:], parameters=label_Fwa, linewidth=2.0, name=name, kde=1.5, color="blue",num_free_params=len(begin_Fwa)).configure(summary=True, shade_alpha=0.2,statistics="max")133# Gets best fit and plus/​minus error 134Fwa_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]135Fwa_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]136Fwa_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]137Fwa_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]138Fwa_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]139Fwa_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]140Fwa_oa = c.analysis.get_summary(chains=name)['$w_a$'][1]141Fwa_oap =c.analysis.get_summary(chains=name)['$w_a$'][2]-c.analysis.get_summary(chains=name)['$w_a$'][1]142Fwa_oam =c.analysis.get_summary(chains=name)['$w_a$'][1]-c.analysis.get_summary(chains=name)['$w_a$'][0]143fig, ax = plt.subplots(1, 1)144# Selectings which params to plot and on what axis145c.plotter.plot_contour(ax, '$w_0$', '$w_a$') 146# Unique to model147ax.text(-1.85,-7,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_om,Fwa_omp,Fwa_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 148ax.text(-1.85,-7-1,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_o0,Fwa_o0p,Fwa_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')149ax.text(-1.85,-7-2,'$\omega_{a} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_oa,Fwa_oap,Fwa_oam), family='serif',color='black',rotation=0,fontsize=12,ha='left')150ax.set_xlabel(r'$\omega_0$', fontsize = 18)151ax.set_ylabel(r'$\omega_a$', fontsize = 18)152# Plot limits153#ax.set_xlim(-2,0)154#ax.set_ylim(-3,2)155#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])156plt.minorticks_on()157ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")158ax.legend(loc='upper right',frameon=False,fontsize=12)159#plt.show()160plt.close()161c.remove_chain('Fwa')162### Fwz PLOT163name = Fwz.__name__164# The actual chain this code is about165c.add_chain(Fwz_COBAYA_CHAIN[500:], parameters=label_Fwz, linewidth=2.0, name=name, kde=1.5, color="blue",num_free_params=len(begin_Fwz)).configure(summary=True, shade_alpha=0.2,statistics="max")166# Gets best fit and plus/​minus error 167Fwz_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]168Fwz_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]169Fwz_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]170Fwz_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]171Fwz_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]172Fwz_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]173Fwz_oz = c.analysis.get_summary(chains=name)['$w_z$'][1]174Fwz_ozp =c.analysis.get_summary(chains=name)['$w_z$'][2]-c.analysis.get_summary(chains=name)['$w_z$'][1]175Fwz_ozm =c.analysis.get_summary(chains=name)['$w_z$'][1]-c.analysis.get_summary(chains=name)['$w_z$'][0]176fig, ax = plt.subplots(1, 1)177# Selectings which params to plot and on what axis178c.plotter.plot_contour(ax,'$w_0$', '$w_z$') 179# Unique to model180ax.text(-1.85,-7,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_om,Fwz_omp,Fwz_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 181ax.text(-1.85,-7-1,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_o0,Fwz_o0p,Fwz_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')182ax.text(-1.85,-7-2,'$\omega_{z} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_oz,Fwz_ozp,Fwz_ozm), family='serif',color='black',rotation=0,fontsize=12,ha='left')183ax.set_xlabel(r'$\omega_0$', fontsize = 18)184ax.set_ylabel(r'$\omega_z$', fontsize = 18)185# Plot limits186#ax.set_xlim(-2,0)187#ax.set_ylim(-3,2)188#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])189plt.minorticks_on()190ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")191ax.legend(loc='upper right',frameon=False,fontsize=12)192#plt.show()193plt.close()194c.remove_chain('Fwz')195### IDE1 PLOT196### FGCHAP PLOT 197c.add_chain(FGChap_COBAYA_CHAIN[200:], parameters=[r'$A$', r'$\alpha$'], linewidth=2.0, name="FGChap", kde=1.5, color="red",num_free_params=2, num_eff_data_points=20).configure(summary=True, shade_alpha=0.2,statistics="max")198FGChap_A = c.analysis.get_summary(chains="FGChap")[r'$A$'][1]199FGChap_Ap = c.analysis.get_summary(chains="FGChap")[r'$A$'][2]-c.analysis.get_summary(chains="FGChap")[r'$A$'][1]200FGChap_Am = c.analysis.get_summary(chains="FGChap")[r'$A$'][1]-c.analysis.get_summary(chains="FGChap")[r'$A$'][0]201FGChap_a = c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][1]202FGChap_ap =c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][2]-c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][1]203FGChap_am =c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][1]-c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][0]204fig, ax = plt.subplots(1, 1)205ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)206ok = 1- (om+ol)207ax.scatter(1-fom, 0, marker = 'D', s = 50, c='black', label = r'Flat $\Lambda$', zorder = 2)208c.plotter.plot_contour(ax,r'$A$', r'$\alpha$')209ax.text(0.91,-0.59,r'$A = %10.5s^{%10.5s}_{%10.5s}$' %(FGChap_A,FGChap_Ap,FGChap_Am), family='serif',color='black',rotation=0,fontsize=16,ha='right') 210ax.text(0.91,-0.59-0.3,r'$\alpha = %10.5s^{%10.5s}_{%10.5s}$' %(FGChap_a,FGChap_ap,FGChap_am), family='serif',color='black',rotation=0,fontsize=16,ha='right')211#ax.text(0.86,-0.5-0.4,r'$X=\Lambda CDM$ Best Fit', family='serif',color='black',rotation=0,fontsize=12,ha='right')212ax.set_xlabel(r'$A$', fontsize = 18)213ax.set_ylabel(r'$\alpha$', fontsize = 18) 214ax.tick_params(axis='x', labelsize=12)215ax.tick_params(axis='y', labelsize=12)216ax.set_xlim(0.5,0.92)217ax.set_ylim(-1,2)218ax.set_xticklabels(['','0.55','','0.65','','0.75','','0.85',''])219plt.minorticks_on()220ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")221ax.legend(loc='upper left',frameon=False,fontsize=16)222#plt.show()223plt.close()224c.remove_chain('FGChap')225#c.plotter.plot(figsize="COLUMN", chains=['FGChap'],filename='FGChap_TEST' ) 226#c.plotter.plot(figsize="COLUMN", chains=['LCDM'],filename='LCDM_TEST' ) 227#print(c.comparison.comparison_table(caption="Model comparisons!"))228### CHAP PLOT 229c.add_chain(Chap_COBAYA_CHAIN[500:], parameters=[r'$A$', r'$\Omega_{K}$'], linewidth=2.0, name="Chap", kde=1.5, color="red",num_free_params=2, num_eff_data_points=20).configure(summary=True, shade_alpha=0.2,statistics="max")230Chap_A = c.analysis.get_summary(chains="Chap")[r'$A$'][1]231Chap_Ap = c.analysis.get_summary(chains="Chap")[r'$A$'][2]-c.analysis.get_summary(chains="Chap")[r'$A$'][1]232Chap_Am = c.analysis.get_summary(chains="Chap")[r'$A$'][1]-c.analysis.get_summary(chains="Chap")[r'$A$'][0]233Chap_ok = c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][1]234Chap_okp =c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][2]-c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][1]235Chap_okm =c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][1]-c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][0]236fig, ax = plt.subplots(1, 1)237#ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)238c.plotter.plot_contour(ax, r'$\Omega_{K}$',r'$A$')239ax.text(0.78,0.3,r'$A = %10.5s^{%10.5s}_{%10.5s}$' %(Chap_A,Chap_Ap,Chap_Am), family='serif',color='black',rotation=0,fontsize=12,ha='right') 240ax.text(0.78,0.3-0.08,r'$\Omega_{K} = %10.5s^{%10.5s}_{%10.5s}$' %(Chap_ok,Chap_okp,Chap_okm), family='serif',color='black',rotation=0,fontsize=12,ha='right')241ax.set_ylabel(r'$A$', fontsize = 18)242ax.set_xlabel(r'$\Omega_{K}$', fontsize = 18) 243ax.set_ylim(0.15,1.025)244ax.set_xlim(-0.85,0.85)245plt.minorticks_on()246ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")247ax.legend(loc='upper left',frameon=False,fontsize=12)248#plt.show()249plt.close()250c.remove_chain('Chap')251### GCHAP PLOT 252c.add_chain(GChap_COBAYA_CHAIN[2000:], parameters=[r"$A$",r"$\alpha$",r"$\Omega_{K}$"], linewidth=2.0, name="GChap", kde=1.5, color="red",num_free_params=2).configure(summary=True, shade_alpha=0.2,statistics="max")253GChap_A = c.analysis.get_summary(chains="GChap")[r'$A$'][1]254GChap_Ap = c.analysis.get_summary(chains="GChap")[r'$A$'][2]-c.analysis.get_summary(chains="GChap")[r'$A$'][1]255GChap_Am = c.analysis.get_summary(chains="GChap")[r'$A$'][1]-c.analysis.get_summary(chains="GChap")[r'$A$'][0]256GChap_ok = c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][1]257GChap_okp =c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][2]-c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][1]258GChap_okm =c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][1]-c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][0]259GChap_a = c.analysis.get_summary(chains="GChap")[r"$\alpha$"][1]260GChap_ap =c.analysis.get_summary(chains="GChap")[r"$\alpha$"][2]-c.analysis.get_summary(chains="GChap")[r"$\alpha$"][1]261GChap_am =c.analysis.get_summary(chains="GChap")[r"$\alpha$"][1]-c.analysis.get_summary(chains="GChap")[r"$\alpha$"][0]262fig, ax = plt.subplots(1, 1)263ax.scatter(1-(om/​(1-ok)), 0, marker = 'X', s = 60, c='red', label = r'$\Lambda$', zorder = 3)264ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)265c.plotter.plot_contour(ax, r'$A$',r"$\alpha$")266ax.text(0.51,1.5 ,r'$A = %10.5s^{%10.5s}_{%10.5s}$' %(GChap_A,GChap_Ap,GChap_Am), family='serif',color='black',rotation=0,fontsize=12,ha='left') 267ax.text(0.51,1.5-0.25,r'$\alpha = %10.5s^{%10.5s}_{%10.5s}$' %(GChap_a,GChap_ap,GChap_am), family='serif',color='black',rotation=0,fontsize=12,ha='left')268ax.text(0.51,1.5-0.5,r'$\Omega_{K} = %10.5s^{%10.5s}_{%10.5s}$' %(GChap_ok,GChap_okp,GChap_okm), family='serif',color='black',rotation=0,fontsize=12,ha='left')269ax.set_xlabel(r'$A$', fontsize = 18)270ax.set_ylabel(r"$\alpha$", fontsize = 18) 271ax.set_ylim(-1,2.0)272ax.set_xlim(0.5,1)273plt.minorticks_on()274ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")275ax.legend(loc='upper left',frameon=False,fontsize=12)276plt.show()277#plt.close()278c.remove_chain('GChap')279exit()280### FCa PLOT 281c.add_chain(FCa_COBAYA_CHAIN[500:], parameters=[r"$\Omega_m$",r"$q$",r"$n$"], linewidth=2.0, name="FCa", kde=1.5, color="red",num_free_params=3).configure(summary=True, shade_alpha=0.2,statistics="max")282FCa_om = c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][1]283FCa_omp = c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][2]-c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][1]284FCa_omm = c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][1]-c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][0]285FCa_q = c.analysis.get_summary(chains="FCa")[r"$q$"][1]286FCa_qp =c.analysis.get_summary(chains="FCa")[r"$q$"][2]-c.analysis.get_summary(chains="FCa")[r"$q$"][1]287FCa_qm =c.analysis.get_summary(chains="FCa")[r"$q$"][1]-c.analysis.get_summary(chains="FCa")[r"$q$"][0]288FCa_n = c.analysis.get_summary(chains="FCa")[r"$n$"][1]289FCa_np =c.analysis.get_summary(chains="FCa")[r"$n$"][2]-c.analysis.get_summary(chains="FCa")[r"$n$"][1]290FCa_nm =c.analysis.get_summary(chains="FCa")[r"$n$"][1]-c.analysis.get_summary(chains="FCa")[r"$n$"][0]291fig, ax = plt.subplots(1, 1)292ax.scatter(1, 0, marker = 'x', s = 70, c='black', zorder = 3)293ax.axvline(1,color = 'k', ls = ':', linewidth=1, zorder = 1)294c.plotter.plot_contour(ax, r"$q$",r"$n$")295ax.text(2.9,-2.23,r'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(FCa_om,FCa_omp,FCa_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right')296ax.text(2.9,-2.23-0.3,r'$q = %10.5s^{%10.5s}_{%10.5s}$' %(FCa_q,FCa_qp,FCa_qm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 297ax.text(2.9,-2.23-0.6,r'$n = %10.5s^{%10.5s}_{%10.5s}$' %(FCa_n,FCa_np,FCa_nm), family='serif',color='black',rotation=0,fontsize=12,ha='right')298ax.set_xlabel(r'$q$', fontsize = 18)299ax.set_ylabel(r"$n$", fontsize = 18) 300ax.set_ylim(-3,0.5)301ax.set_xlim(0.1,3)302plt.minorticks_on()303ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")304ax.legend(loc='upper left',frameon=False,fontsize=12)305#plt.show()306plt.close()307c.remove_chain('FCa')308### Fwa PLOT309name = Fwa.__name__310# The actualchain this code is about311c.add_chain(Fwa_COBAYA_CHAIN[1000:], parameters=label_Fwa, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_Fwa)).configure(summary=True, shade_alpha=0.2,statistics="max")312# Gets best fit and plus/​minus error 313Fwa_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]314Fwa_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]315Fwa_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]316Fwa_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]317Fwa_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]318Fwa_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]319Fwa_oa = c.analysis.get_summary(chains=name)['$w_a$'][1]320Fwa_oap =c.analysis.get_summary(chains=name)['$w_a$'][2]-c.analysis.get_summary(chains=name)['$w_a$'][1]321Fwa_oam =c.analysis.get_summary(chains=name)['$w_a$'][1]-c.analysis.get_summary(chains=name)['$w_a$'][0]322fig, ax = plt.subplots(1, 1)323# Selectings which params to plot and on what axis324c.plotter.plot_contour(ax, '$w_0$', '$w_a$') 325# Unique to model326ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)327ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)328ax.text(-4.4,-6,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_om,Fwa_omp,Fwa_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 329ax.text(-4.4,-6-1.5,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_o0,Fwa_o0p,Fwa_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')330ax.text(-4.4,-6-3,'$\omega_{a} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_oa,Fwa_oap,Fwa_oam), family='serif',color='black',rotation=0,fontsize=12,ha='left')331ax.set_xlabel(r'$\omega_0$', fontsize = 18)332ax.set_ylabel(r'$\omega_a$', fontsize = 18)333# Plot limits334ax.set_xlim(-4.7,-0.2)335#ax.set_ylim(-10,10)336#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])337plt.minorticks_on()338ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")339ax.legend(loc='upper right',frameon=False,fontsize=12)340#plt.show()341plt.close()342c.remove_chain('Fwa')343### Fwz PLOT344name = Fwz.__name__345# The actual chain this code is about346c.add_chain(Fwz_COBAYA_CHAIN[1000:], parameters=label_Fwz, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_Fwz)).configure(summary=True, shade_alpha=0.2,statistics="max")347# Gets best fit and plus/​minus error 348Fwz_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]349Fwz_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]350Fwz_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]351Fwz_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]352Fwz_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]353Fwz_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]354Fwz_oz = c.analysis.get_summary(chains=name)['$w_z$'][1]355Fwz_ozp =c.analysis.get_summary(chains=name)['$w_z$'][2]-c.analysis.get_summary(chains=name)['$w_z$'][1]356Fwz_ozm =c.analysis.get_summary(chains=name)['$w_z$'][1]-c.analysis.get_summary(chains=name)['$w_z$'][0]357fig, ax = plt.subplots(1, 1)358# Selectings which params to plot and on what axis359c.plotter.plot_contour(ax,'$w_0$', '$w_z$') 360# Unique to model361ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)362ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)363ax.text(-4.6,-6,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_om,Fwz_omp,Fwz_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 364ax.text(-4.6,-6-1.5,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_o0,Fwz_o0p,Fwz_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')365ax.text(-4.6,-6-3,'$\omega_{z} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_oz,Fwz_ozp,Fwz_ozm), family='serif',color='black',rotation=0,fontsize=12,ha='left')366ax.set_xlabel(r'$\omega_0$', fontsize = 18)367ax.set_ylabel(r'$\omega_z$', fontsize = 18)368# Plot limits369ax.set_xlim(-4.7,0.3)370#ax.set_ylim(-3,2)371#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])372plt.minorticks_on()373ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")374ax.legend(loc='upper right',frameon=False,fontsize=12)375#plt.show()376plt.close()377c.remove_chain('Fwz')378### IDE1 PLOT379name = IDE1.__name__380# The actual chain this code is about381c.add_chain(IDE1_COBAYA_CHAIN[1000:], parameters=label_IDE1, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_IDE1)).configure(summary=True, shade_alpha=0.2,statistics="max")382# Gets best fit and plus/​minus error 383IDE1_om = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]384IDE1_omp = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]385IDE1_omm = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][0]386IDE1_ol = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]387IDE1_olp = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]388IDE1_olm = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][0]389IDE1_w = c.analysis.get_summary(chains=name)[r"$\omega$"][1]390IDE1_wp =c.analysis.get_summary(chains=name)[r"$\omega$"][2]-c.analysis.get_summary(chains=name)[r"$\omega$"][1]391IDE1_wm =c.analysis.get_summary(chains=name)[r"$\omega$"][1]-c.analysis.get_summary(chains=name)[r"$\omega$"][0]392IDE1_e = c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]393IDE1_ep =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][2]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]394IDE1_em =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][0]395fig, ax = plt.subplots(1, 1)396# Selectings which params to plot and on what axis397c.plotter.plot_contour(ax,r"$\omega$", r"$\varepsilon$") 398# Unique to model399ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)400ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)401ax.text(0,-0.225,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_om,IDE1_omp,IDE1_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 402ax.text(0,-0.225-0.075,r'$\Omega_x = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_ol,IDE1_olp,IDE1_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')403ax.text(0,-0.225-0.15,r'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_w,IDE1_wp,IDE1_wm), family='serif',color='black',rotation=0,fontsize=12,ha='right')404ax.text(0,-0.225-0.225,r'$\varepsilon = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_e,IDE1_ep,IDE1_em), family='serif',color='black',rotation=0,fontsize=12,ha='right')405ax.set_xlabel(r"$\omega$", fontsize = 18)406ax.set_ylabel(r"$\varepsilon$", fontsize = 18)407# Plot limits408ax.set_xlim(-2.0,0.05)409ax.set_ylim(-0.5,0.5)410#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])411plt.minorticks_on()412ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")413ax.legend(loc='upper right',frameon=False,fontsize=12)414#plt.show()415plt.close()416c.remove_chain('IDE1')417### IDE2 PLOT418name = IDE2.__name__419# The actual chain this code is about420c.add_chain(IDE2_COBAYA_CHAIN[500:], parameters=label_IDE2, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_IDE1)).configure(summary=True, shade_alpha=0.2,statistics="max")421# Gets best fit and plus/​minus error 422IDE2_om = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]423IDE2_omp = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]424IDE2_omm = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][0]425IDE2_ol = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]426IDE2_olp = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]427IDE2_olm = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][0]428IDE2_w = c.analysis.get_summary(chains=name)[r"$\omega$"][1]429IDE2_wp =c.analysis.get_summary(chains=name)[r"$\omega$"][2]-c.analysis.get_summary(chains=name)[r"$\omega$"][1]430IDE2_wm =c.analysis.get_summary(chains=name)[r"$\omega$"][1]-c.analysis.get_summary(chains=name)[r"$\omega$"][0]431IDE2_e = c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]432IDE2_ep =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][2]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]433IDE2_em =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][0]434fig, ax = plt.subplots(1, 1)435# Selectings which params to plot and on what axis436c.plotter.plot_contour(ax,r"$\omega$", r"$\varepsilon$") 437# Unique to model438ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)439ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)440ax.text(1.9,-0.225,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_om,IDE2_omp,IDE2_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 441ax.text(1.9,-0.225-0.075,r'$\Omega_x = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_ol,IDE2_olp,IDE2_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')442ax.text(1.9,-0.225-0.15,r'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_w,IDE2_wp,IDE2_wm), family='serif',color='black',rotation=0,fontsize=12,ha='right')443ax.text(1.9,-0.225-0.225,r'$\varepsilon = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_e,IDE2_ep,IDE2_em), family='serif',color='black',rotation=0,fontsize=12,ha='right')444ax.set_xlabel(r"$\omega$", fontsize = 18)445ax.set_ylabel(r"$\varepsilon$", fontsize = 18)446# Plot limits447ax.set_xlim(-5.0,2)448ax.set_ylim(-0.5,0.5)449#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])450plt.minorticks_on()451ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")452ax.legend(loc='upper right',frameon=False,fontsize=12)453plt.show()454#plt.close()455c.remove_chain('IDE2')456### IDE4 PLOT457name = IDE4.__name__458# The actual chain this code is about459c.add_chain(IDE4_COBAYA_CHAIN[500:], parameters=label_IDE4, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_IDE1)).configure(summary=True, shade_alpha=0.2,statistics="max")460# Gets best fit and plus/​minus error 461IDE4_om = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]462IDE4_omp = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]463IDE4_omm = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][0]464IDE4_ol = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]465IDE4_olp = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]466IDE4_olm = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][0]467IDE4_w = c.analysis.get_summary(chains=name)[r"$\omega$"][1]468IDE4_wp =c.analysis.get_summary(chains=name)[r"$\omega$"][2]-c.analysis.get_summary(chains=name)[r"$\omega$"][1]469IDE4_wm =c.analysis.get_summary(chains=name)[r"$\omega$"][1]-c.analysis.get_summary(chains=name)[r"$\omega$"][0]470IDE4_e = c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]471IDE4_ep =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][2]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]472IDE4_em =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][0]473fig, ax = plt.subplots(1, 1)474# Selectings which params to plot and on what axis475c.plotter.plot_contour(ax,r"$\omega$", r"$\varepsilon$") 476# Unique to model477ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)478ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)479ax.text(1.9,-0.225,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_om,IDE4_omp,IDE4_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 480ax.text(1.9,-0.225-0.075,r'$\Omega_x = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_ol,IDE4_olp,IDE4_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')481ax.text(1.9,-0.225-0.15,r'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_w,IDE4_wp,IDE4_wm), family='serif',color='black',rotation=0,fontsize=12,ha='right')482ax.text(1.9,-0.225-0.225,r'$\varepsilon = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_e,IDE4_ep,IDE4_em), family='serif',color='black',rotation=0,fontsize=12,ha='right')483ax.set_xlabel(r"$\omega$", fontsize = 18)484ax.set_ylabel(r"$\varepsilon$", fontsize = 18)485# Plot limits486ax.set_xlim(-5.0,2)...

Full Screen

Full Screen

COBAYA_CONTOURS_DES3YR_BIN.py

Source: COBAYA_CONTOURS_DES3YR_BIN.py Github

copy

Full Screen

...35label_Chap, begin_Chap, legend_Chap = get_info(Chap.__name__)36#### PLOTS FOR DIFFERENT MODELS - NOTE PARAMS ARE SAVED AS: MODEL_PARAM - BESIDES FLCDM/​LCDM37### FLCDM - Used as a Scatter point on some plots38c.add_chain(FLCDM_COBAYA_CHAIN, parameters=label_FLCDM, linewidth=2.0, name="FLCDM", kde=1.5, color="blue").configure(summary=True, shade_alpha=0.2,statistics="max")39fom = c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][1]40fomp = c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][2]-c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][1]41fomm = c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][1]-c.analysis.get_summary(chains="FLCDM")[r'$\Omega_m$'][0]42c.remove_chain('FLCDM')43### LCDM PLOT & points which is sometimes used as a scatter point on some plots44fig, ax = plt.subplots(1, 1)45c.add_chain(LCDM_COBAYA_CHAIN, parameters=label_LCDM, linewidth=2.0, name="LCDM", kde=1.5, color="red",num_free_params=2).configure(summary=True, shade_alpha=0.2,statistics="max")46om = c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][1]47omp = c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][2]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][1]48omm = c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][1]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_m$'][0]49ol = c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][1]50olp =c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][2]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][1]51olm =c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][1]-c.analysis.get_summary(chains="LCDM")[r'$\Omega_{\Lambda}$'][0]52c.plotter.plot_contour(ax,r'$\Omega_m$', r'$\Omega_{\Lambda}$')53ax.scatter(fom, 1-fom, marker = 'D', s = 50, c='black', label = r'Flat $\Lambda$')54ax.text(1.2,0.4,'$\Omega_m = %10.5s\pm{%10.5s}$' %(om,omp), family='serif',color='black',rotation=0,fontsize=12,ha='right') 55ax.text(1.2,0.25,'$\Omega_{\Lambda} = %10.5s\pm{%10.5s}$' %(ol,olp), family='serif',color='black',rotation=0,fontsize=12,ha='right')56ax.set_xlabel(r'$\Omega_m$', fontsize = 18)57ax.set_ylabel(r'$\Omega_{\Lambda}$', fontsize = 18) 58#ax.set_xlim(0,1.2)59#ax.set_ylim(0.48,1.06)60plt.minorticks_on()61ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")62ax.legend(loc='upper right',frameon=False,fontsize=12)63plt.close()64#plt.show()65c.remove_chain('LCDM')66### FwCDM PLOT67name = FwCDM.__name__68c.add_chain(FwCDM_COBAYA_CHAIN[200:], parameters=label_FwCDM, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_FwCDM)).configure(summary=True, shade_alpha=0.2,statistics="max")69# Gets best fit and plus/​minus error70FwCDM_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]71FwCDM_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]72FwCDM_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]73FwCDM_w = c.analysis.get_summary(chains=name)[r'$\omega$'][1]74FwCDM_wp =c.analysis.get_summary(chains=name)[r'$\omega$'][2]-c.analysis.get_summary(chains=name)[r'$\omega$'][1]75FwCDM_wm =c.analysis.get_summary(chains=name)[r'$\omega$'][1]-c.analysis.get_summary(chains=name)[r'$\omega$'][0]76fig, ax = plt.subplots(1, 1)77# Unique to this plot - plotting FLCDM best fit param78ax.scatter(fom, -1, marker = 'D', s = 50, c='black', label = r'Flat $\Lambda$')79# Selectings which params to plot and on what axis80c.plotter.plot_contour(ax, *label_FwCDM) 81# Unique to FwCDM model82ax.text(0.12,-1.75,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(FwCDM_om,FwCDM_omp,FwCDM_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 83ax.text(0.12,-1.75-0.15,'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(FwCDM_w,FwCDM_wp,FwCDM_wm), family='serif',color='black',rotation=0,fontsize=12,ha='left')84ax.set_xlabel(r'$\Omega_m$', fontsize = 18)85ax.set_ylabel(r'$\omega$', fontsize = 18)86# Plot limits87#ax.set_xlim(0.20,0.5)88#ax.set_ylim(0.48,1.06)89plt.minorticks_on()90ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")91ax.legend(loc='upper right',frameon=False,fontsize=12)92plt.close()93#plt.show()94c.remove_chain('FwCDM')95### wCDM PLOT96name = wCDM.__name__97c.add_chain(wCDM_COBAYA_CHAIN[1000:], parameters=label_wCDM, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_wCDM)).configure(summary=True, shade_alpha=0.2,statistics="max")98# Gets best fit and plus/​minus error 99wCDM_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]100wCDM_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]101wCDM_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]102wCDM_ol = c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][1]103wCDM_olp = c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][1]104wCDM_olm = c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_{\Lambda}$'][0]105wCDM_o = c.analysis.get_summary(chains=name)[r'$\omega$'][1]106wCDM_op =c.analysis.get_summary(chains=name)[r'$\omega$'][2]-c.analysis.get_summary(chains=name)[r'$\omega$'][1]107wCDM_omi =c.analysis.get_summary(chains=name)[r'$\omega$'][1]-c.analysis.get_summary(chains=name)[r'$\omega$'][0]108fig, ax = plt.subplots(1, 1)109# Selectings which params to plot and on what axis110c.plotter.plot_contour(ax, r'$\Omega_m$', r"$\omega$")111# Unique to this plot - plotting LCDM best fit param112ax.scatter(om, -1, marker = 'X', s = 60, c='red', label = r'$\Lambda$')113# Unique to model114ax.text(1.15,-1.65,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(wCDM_om,wCDM_omp,wCDM_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 115ax.text(1.15,-1.65-0.13,'$\Omega_{\Lambda} = %10.5s^{%10.5s}_{%10.5s}$' %(wCDM_ol,wCDM_olp,wCDM_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')116ax.text(1.15,-1.65-0.26,'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(wCDM_o,wCDM_op,wCDM_omi), family='serif',color='black',rotation=0,fontsize=12,ha='right')117ax.set_xlabel(r'$\Omega_m$', fontsize = 18)118ax.set_ylabel(r'$\omega$', fontsize = 18)119# Plot limits120#ax.set_xlim(0.20,0.6)121#ax.set_ylim(-2,-0.5)122#ax.set_xticklabels(['0.2','','0.3','','0.4','','0.5','','0.6'])123#ax.set_yticklabels(['','-1.8','','-1.4','','-1.0','','-0.6'])124plt.minorticks_on()125ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")126ax.legend(loc='upper right',frameon=False,fontsize=12)127#plt.show()128plt.close()129c.remove_chain('wCDM')130### Fwa PLOT131name = Fwa.__name__132# The actualchain this code is about133c.add_chain(Fwa_COBAYA_CHAIN[1000:], parameters=label_Fwa, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_Fwa)).configure(summary=True, shade_alpha=0.2,statistics="max")134# Gets best fit and plus/​minus error 135Fwa_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]136Fwa_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]137Fwa_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]138Fwa_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]139Fwa_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]140Fwa_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]141Fwa_oa = c.analysis.get_summary(chains=name)['$w_a$'][1]142Fwa_oap =c.analysis.get_summary(chains=name)['$w_a$'][2]-c.analysis.get_summary(chains=name)['$w_a$'][1]143Fwa_oam =c.analysis.get_summary(chains=name)['$w_a$'][1]-c.analysis.get_summary(chains=name)['$w_a$'][0]144fig, ax = plt.subplots(1, 1)145# Selectings which params to plot and on what axis146c.plotter.plot_contour(ax, '$w_0$', '$w_a$') 147# Unique to model148ax.text(-1.85,-7,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_om,Fwa_omp,Fwa_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 149ax.text(-1.85,-7-1,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_o0,Fwa_o0p,Fwa_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')150ax.text(-1.85,-7-2,'$\omega_{a} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_oa,Fwa_oap,Fwa_oam), family='serif',color='black',rotation=0,fontsize=12,ha='left')151ax.set_xlabel(r'$\omega_0$', fontsize = 18)152ax.set_ylabel(r'$\omega_a$', fontsize = 18)153# Plot limits154#ax.set_xlim(-2,0)155#ax.set_ylim(-3,2)156#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])157plt.minorticks_on()158ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")159ax.legend(loc='upper right',frameon=False,fontsize=12)160#plt.show()161plt.close()162c.remove_chain('Fwa')163### Fwz PLOT164name = Fwz.__name__165# The actual chain this code is about166c.add_chain(Fwz_COBAYA_CHAIN[500:], parameters=label_Fwz, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_Fwz)).configure(summary=True, shade_alpha=0.2,statistics="max")167# Gets best fit and plus/​minus error 168Fwz_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]169Fwz_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]170Fwz_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]171Fwz_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]172Fwz_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]173Fwz_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]174Fwz_oz = c.analysis.get_summary(chains=name)['$w_z$'][1]175Fwz_ozp =c.analysis.get_summary(chains=name)['$w_z$'][2]-c.analysis.get_summary(chains=name)['$w_z$'][1]176Fwz_ozm =c.analysis.get_summary(chains=name)['$w_z$'][1]-c.analysis.get_summary(chains=name)['$w_z$'][0]177fig, ax = plt.subplots(1, 1)178# Selectings which params to plot and on what axis179c.plotter.plot_contour(ax,'$w_0$', '$w_z$') 180# Unique to model181ax.text(-1.85,-7,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_om,Fwz_omp,Fwz_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 182ax.text(-1.85,-7-1,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_o0,Fwz_o0p,Fwz_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')183ax.text(-1.85,-7-2,'$\omega_{z} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_oz,Fwz_ozp,Fwz_ozm), family='serif',color='black',rotation=0,fontsize=12,ha='left')184ax.set_xlabel(r'$\omega_0$', fontsize = 18)185ax.set_ylabel(r'$\omega_z$', fontsize = 18)186# Plot limits187#ax.set_xlim(-2,0)188#ax.set_ylim(-3,2)189#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])190plt.minorticks_on()191ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")192ax.legend(loc='upper right',frameon=False,fontsize=12)193#plt.show()194plt.close()195c.remove_chain('Fwz')196### IDE1 PLOT197### FGCHAP PLOT 198c.add_chain(FGChap_COBAYA_CHAIN[200:], parameters=[r'$A$', r'$\alpha$'], linewidth=2.0, name="FGChap", kde=1.5, color="red",num_free_params=2, num_eff_data_points=20).configure(summary=True, shade_alpha=0.2,statistics="max")199FGChap_A = c.analysis.get_summary(chains="FGChap")[r'$A$'][1]200FGChap_Ap = c.analysis.get_summary(chains="FGChap")[r'$A$'][2]-c.analysis.get_summary(chains="FGChap")[r'$A$'][1]201FGChap_Am = c.analysis.get_summary(chains="FGChap")[r'$A$'][1]-c.analysis.get_summary(chains="FGChap")[r'$A$'][0]202FGChap_a = c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][1]203FGChap_ap =c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][2]-c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][1]204FGChap_am =c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][1]-c.analysis.get_summary(chains="FGChap")[r'$\alpha$'][0]205fig, ax = plt.subplots(1, 1)206ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)207ok = 1- (om+ol)208ax.scatter(1-fom, 0, marker = 'D', s = 50, c='black', label = r'Flat $\Lambda$', zorder = 2)209c.plotter.plot_contour(ax,r'$A$', r'$\alpha$')210ax.text(0.89,-0.62,r'$A = %10.5s^{%10.5s}_{%10.5s}$' %(FGChap_A,FGChap_Ap,FGChap_Am), family='serif',color='black',rotation=0,fontsize=12,ha='right') 211ax.text(0.89,-0.62-0.2,r'$\alpha = %10.5s^{%10.5s}_{%10.5s}$' %(FGChap_a,FGChap_ap,FGChap_am), family='serif',color='black',rotation=0,fontsize=12,ha='right')212#ax.text(0.86,-0.5-0.4,r'$X=\Lambda CDM$ Best Fit', family='serif',color='black',rotation=0,fontsize=12,ha='right')213ax.set_xlabel(r'$A$', fontsize = 18)214ax.set_ylabel(r'$\alpha$', fontsize = 18) 215#ax.set_ylim(-1,2)216plt.minorticks_on()217ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")218ax.legend(loc='upper left',frameon=False,fontsize=12)219#plt.show()220plt.close()221c.remove_chain('FGChap')222#c.plotter.plot(figsize="COLUMN", chains=['FGChap'],filename='FGChap_TEST' ) 223#c.plotter.plot(figsize="COLUMN", chains=['LCDM'],filename='LCDM_TEST' ) 224#print(c.comparison.comparison_table(caption="Model comparisons!"))225### CHAP PLOT 226c.add_chain(Chap_COBAYA_CHAIN[500:], parameters=[r'$A$', r'$\Omega_{K}$'], linewidth=2.0, name="Chap", kde=1.5, color="red",num_free_params=2, num_eff_data_points=20).configure(summary=True, shade_alpha=0.2,statistics="max")227Chap_A = c.analysis.get_summary(chains="Chap")[r'$A$'][1]228Chap_Ap = c.analysis.get_summary(chains="Chap")[r'$A$'][2]-c.analysis.get_summary(chains="Chap")[r'$A$'][1]229Chap_Am = c.analysis.get_summary(chains="Chap")[r'$A$'][1]-c.analysis.get_summary(chains="Chap")[r'$A$'][0]230Chap_ok = c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][1]231Chap_okp =c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][2]-c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][1]232Chap_okm =c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][1]-c.analysis.get_summary(chains="Chap")[r'$\Omega_{K}$'][0]233fig, ax = plt.subplots(1, 1)234#ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)235c.plotter.plot_contour(ax, r'$\Omega_{K}$',r'$A$')236ax.text(0.78,0.3,r'$A = %10.5s^{%10.5s}_{%10.5s}$' %(Chap_A,Chap_Ap,Chap_Am), family='serif',color='black',rotation=0,fontsize=12,ha='right') 237ax.text(0.78,0.3-0.08,r'$\Omega_{K} = %10.5s^{%10.5s}_{%10.5s}$' %(Chap_ok,Chap_okp,Chap_okm), family='serif',color='black',rotation=0,fontsize=12,ha='right')238ax.set_ylabel(r'$A$', fontsize = 18)239ax.set_xlabel(r'$\Omega_{K}$', fontsize = 18) 240ax.set_ylim(0.15,1.025)241ax.set_xlim(-0.85,0.85)242plt.minorticks_on()243ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")244ax.legend(loc='upper left',frameon=False,fontsize=12)245#plt.show()246plt.close()247c.remove_chain('Chap')248### GCHAP PLOT 249c.add_chain(GChap_COBAYA_CHAIN[500:], parameters=[r"$A$",r"$\alpha$",r"$\Omega_{K}$"], linewidth=2.0, name="GChap", kde=1.5, color="red",num_free_params=2).configure(summary=True, shade_alpha=0.2,statistics="max")250GChap_A = c.analysis.get_summary(chains="GChap")[r'$A$'][1]251GChap_Ap = c.analysis.get_summary(chains="GChap")[r'$A$'][2]-c.analysis.get_summary(chains="GChap")[r'$A$'][1]252GChap_Am = c.analysis.get_summary(chains="GChap")[r'$A$'][1]-c.analysis.get_summary(chains="GChap")[r'$A$'][0]253GChap_ok = c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][1]254GChap_okp =c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][2]-c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][1]255GChap_okm =c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][1]-c.analysis.get_summary(chains="GChap")[r'$\Omega_{K}$'][0]256GChap_a = c.analysis.get_summary(chains="GChap")[r"$\alpha$"][1]257GChap_ap =c.analysis.get_summary(chains="GChap")[r"$\alpha$"][2]-c.analysis.get_summary(chains="GChap")[r"$\alpha$"][1]258GChap_am =c.analysis.get_summary(chains="GChap")[r"$\alpha$"][1]-c.analysis.get_summary(chains="GChap")[r"$\alpha$"][0]259fig, ax = plt.subplots(1, 1)260ax.scatter(1-(om/​(1-ok)), 0, marker = 'X', s = 60, c='red', label = r'$\Lambda$', zorder = 3)261ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)262c.plotter.plot_contour(ax, r'$A$',r"$\alpha$")263ax.text(0.51,1.5 ,r'$A = %10.5s^{%10.5s}_{%10.5s}$' %(GChap_A,GChap_Ap,GChap_Am), family='serif',color='black',rotation=0,fontsize=12,ha='left') 264ax.text(0.51,1.5-0.25,r'$\alpha = %10.5s^{%10.5s}_{%10.5s}$' %(GChap_a,GChap_ap,GChap_am), family='serif',color='black',rotation=0,fontsize=12,ha='left')265ax.text(0.51,1.5-0.5,r'$\Omega_{K} = %10.5s^{%10.5s}_{%10.5s}$' %(GChap_ok,GChap_okp,GChap_okm), family='serif',color='black',rotation=0,fontsize=12,ha='left')266ax.set_xlabel(r'$A$', fontsize = 18)267ax.set_ylabel(r"$\alpha$", fontsize = 18) 268ax.set_ylim(-1,2.0)269ax.set_xlim(0.5,1)270plt.minorticks_on()271ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")272ax.legend(loc='upper left',frameon=False,fontsize=12)273plt.show()274#plt.close()275c.remove_chain('GChap')276exit()277### FCa PLOT 278c.add_chain(FCa_COBAYA_CHAIN[500:], parameters=[r"$\Omega_m$",r"$q$",r"$n$"], linewidth=2.0, name="FCa", kde=1.5, color="red",num_free_params=3).configure(summary=True, shade_alpha=0.2,statistics="max")279FCa_om = c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][1]280FCa_omp = c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][2]-c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][1]281FCa_omm = c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][1]-c.analysis.get_summary(chains="FCa")[r"$\Omega_m$"][0]282FCa_q = c.analysis.get_summary(chains="FCa")[r"$q$"][1]283FCa_qp =c.analysis.get_summary(chains="FCa")[r"$q$"][2]-c.analysis.get_summary(chains="FCa")[r"$q$"][1]284FCa_qm =c.analysis.get_summary(chains="FCa")[r"$q$"][1]-c.analysis.get_summary(chains="FCa")[r"$q$"][0]285FCa_n = c.analysis.get_summary(chains="FCa")[r"$n$"][1]286FCa_np =c.analysis.get_summary(chains="FCa")[r"$n$"][2]-c.analysis.get_summary(chains="FCa")[r"$n$"][1]287FCa_nm =c.analysis.get_summary(chains="FCa")[r"$n$"][1]-c.analysis.get_summary(chains="FCa")[r"$n$"][0]288fig, ax = plt.subplots(1, 1)289ax.scatter(1, 0, marker = 'x', s = 70, c='black', zorder = 3)290ax.axvline(1,color = 'k', ls = ':', linewidth=1, zorder = 1)291c.plotter.plot_contour(ax, r"$q$",r"$n$")292ax.text(2.9,-2.23,r'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(FCa_om,FCa_omp,FCa_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right')293ax.text(2.9,-2.23-0.3,r'$q = %10.5s^{%10.5s}_{%10.5s}$' %(FCa_q,FCa_qp,FCa_qm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 294ax.text(2.9,-2.23-0.6,r'$n = %10.5s^{%10.5s}_{%10.5s}$' %(FCa_n,FCa_np,FCa_nm), family='serif',color='black',rotation=0,fontsize=12,ha='right')295ax.set_xlabel(r'$q$', fontsize = 18)296ax.set_ylabel(r"$n$", fontsize = 18) 297ax.set_ylim(-3,0.5)298ax.set_xlim(0.1,3)299plt.minorticks_on()300ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")301ax.legend(loc='upper left',frameon=False,fontsize=12)302#plt.show()303plt.close()304c.remove_chain('FCa')305### Fwa PLOT306name = Fwa.__name__307# The actualchain this code is about308c.add_chain(Fwa_COBAYA_CHAIN[1000:], parameters=label_Fwa, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_Fwa)).configure(summary=True, shade_alpha=0.2,statistics="max")309# Gets best fit and plus/​minus error 310Fwa_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]311Fwa_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]312Fwa_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]313Fwa_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]314Fwa_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]315Fwa_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]316Fwa_oa = c.analysis.get_summary(chains=name)['$w_a$'][1]317Fwa_oap =c.analysis.get_summary(chains=name)['$w_a$'][2]-c.analysis.get_summary(chains=name)['$w_a$'][1]318Fwa_oam =c.analysis.get_summary(chains=name)['$w_a$'][1]-c.analysis.get_summary(chains=name)['$w_a$'][0]319fig, ax = plt.subplots(1, 1)320# Selectings which params to plot and on what axis321c.plotter.plot_contour(ax, '$w_0$', '$w_a$') 322# Unique to model323ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)324ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)325ax.text(-4.4,-6,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_om,Fwa_omp,Fwa_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 326ax.text(-4.4,-6-1.5,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_o0,Fwa_o0p,Fwa_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')327ax.text(-4.4,-6-3,'$\omega_{a} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwa_oa,Fwa_oap,Fwa_oam), family='serif',color='black',rotation=0,fontsize=12,ha='left')328ax.set_xlabel(r'$\omega_0$', fontsize = 18)329ax.set_ylabel(r'$\omega_a$', fontsize = 18)330# Plot limits331#ax.set_xlim(-2,0)332#ax.set_ylim(-10,10)333#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])334plt.minorticks_on()335ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")336ax.legend(loc='upper right',frameon=False,fontsize=12)337#plt.show()338plt.close()339c.remove_chain('Fwa')340### Fwz PLOT341name = Fwz.__name__342# The actual chain this code is about343c.add_chain(Fwz_COBAYA_CHAIN[500:], parameters=label_Fwz, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_Fwz)).configure(summary=True, shade_alpha=0.2,statistics="max")344# Gets best fit and plus/​minus error 345Fwz_om = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]346Fwz_omp = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][2]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]347Fwz_omm = c.analysis.get_summary(chains=name)[r'$\Omega_m$'][1]-c.analysis.get_summary(chains=name)[r'$\Omega_m$'][0]348Fwz_o0 = c.analysis.get_summary(chains=name)['$w_0$'][1]349Fwz_o0p = c.analysis.get_summary(chains=name)['$w_0$'][2]-c.analysis.get_summary(chains=name)['$w_0$'][1]350Fwz_o0m = c.analysis.get_summary(chains=name)['$w_0$'][1]-c.analysis.get_summary(chains=name)['$w_0$'][0]351Fwz_oz = c.analysis.get_summary(chains=name)['$w_z$'][1]352Fwz_ozp =c.analysis.get_summary(chains=name)['$w_z$'][2]-c.analysis.get_summary(chains=name)['$w_z$'][1]353Fwz_ozm =c.analysis.get_summary(chains=name)['$w_z$'][1]-c.analysis.get_summary(chains=name)['$w_z$'][0]354fig, ax = plt.subplots(1, 1)355# Selectings which params to plot and on what axis356c.plotter.plot_contour(ax,'$w_0$', '$w_z$') 357# Unique to model358ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)359ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)360ax.text(-4.4,-6,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_om,Fwz_omp,Fwz_omm), family='serif',color='black',rotation=0,fontsize=12,ha='left') 361ax.text(-4.4,-6-1.5,'$\omega_0 = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_o0,Fwz_o0p,Fwz_o0m), family='serif',color='black',rotation=0,fontsize=12,ha='left')362ax.text(-4.4,-6-3,'$\omega_{z} = %10.5s^{%10.5s}_{%10.5s}$' %(Fwz_oz,Fwz_ozp,Fwz_ozm), family='serif',color='black',rotation=0,fontsize=12,ha='left')363ax.set_xlabel(r'$\omega_0$', fontsize = 18)364ax.set_ylabel(r'$\omega_z$', fontsize = 18)365# Plot limits366ax.set_xlim(-4.7,0.3)367#ax.set_ylim(-3,2)368#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])369plt.minorticks_on()370ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")371ax.legend(loc='upper right',frameon=False,fontsize=12)372#plt.show()373plt.close()374c.remove_chain('Fwz')375### IDE1 PLOT376name = IDE1.__name__377# The actual chain this code is about378c.add_chain(IDE1_COBAYA_CHAIN[500:], parameters=label_IDE1, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_IDE1)).configure(summary=True, shade_alpha=0.2,statistics="max")379# Gets best fit and plus/​minus error 380IDE1_om = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]381IDE1_omp = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]382IDE1_omm = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][0]383IDE1_ol = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]384IDE1_olp = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]385IDE1_olm = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][0]386IDE1_w = c.analysis.get_summary(chains=name)[r"$\omega$"][1]387IDE1_wp =c.analysis.get_summary(chains=name)[r"$\omega$"][2]-c.analysis.get_summary(chains=name)[r"$\omega$"][1]388IDE1_wm =c.analysis.get_summary(chains=name)[r"$\omega$"][1]-c.analysis.get_summary(chains=name)[r"$\omega$"][0]389IDE1_e = c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]390IDE1_ep =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][2]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]391IDE1_em =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][0]392fig, ax = plt.subplots(1, 1)393# Selectings which params to plot and on what axis394c.plotter.plot_contour(ax,r"$\omega$", r"$\varepsilon$") 395# Unique to model396ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)397ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)398ax.text(0,-0.225,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_om,IDE1_omp,IDE1_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 399ax.text(0,-0.225-0.075,r'$\Omega_x = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_ol,IDE1_olp,IDE1_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')400ax.text(0,-0.225-0.15,r'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_w,IDE1_wp,IDE1_wm), family='serif',color='black',rotation=0,fontsize=12,ha='right')401ax.text(0,-0.225-0.225,r'$\varepsilon = %10.5s^{%10.5s}_{%10.5s}$' %(IDE1_e,IDE1_ep,IDE1_em), family='serif',color='black',rotation=0,fontsize=12,ha='right')402ax.set_xlabel(r"$\omega$", fontsize = 18)403ax.set_ylabel(r"$\varepsilon$", fontsize = 18)404# Plot limits405ax.set_xlim(-2.0,0.05)406ax.set_ylim(-0.5,0.5)407#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])408plt.minorticks_on()409ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")410ax.legend(loc='upper right',frameon=False,fontsize=12)411#plt.show()412plt.close()413c.remove_chain('IDE1')414### IDE2 PLOT415name = IDE2.__name__416# The actual chain this code is about417c.add_chain(IDE2_COBAYA_CHAIN[2000:], parameters=label_IDE2, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_IDE1)).configure(summary=True, shade_alpha=0.2,statistics="max")418# Gets best fit and plus/​minus error 419IDE2_om = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]420IDE2_omp = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]421IDE2_omm = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][0]422IDE2_ol = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]423IDE2_olp = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]424IDE2_olm = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][0]425IDE2_w = c.analysis.get_summary(chains=name)[r"$\omega$"][1]426IDE2_wp =c.analysis.get_summary(chains=name)[r"$\omega$"][2]-c.analysis.get_summary(chains=name)[r"$\omega$"][1]427IDE2_wm =c.analysis.get_summary(chains=name)[r"$\omega$"][1]-c.analysis.get_summary(chains=name)[r"$\omega$"][0]428IDE2_e = c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]429IDE2_ep =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][2]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]430IDE2_em =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][0]431fig, ax = plt.subplots(1, 1)432# Selectings which params to plot and on what axis433c.plotter.plot_contour(ax,r"$\omega$", r"$\varepsilon$") 434# Unique to model435ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)436ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)437ax.text(1.9,-0.225,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_om,IDE2_omp,IDE2_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 438ax.text(1.9,-0.225-0.075,r'$\Omega_x = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_ol,IDE2_olp,IDE2_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')439ax.text(1.9,-0.225-0.15,r'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_w,IDE2_wp,IDE2_wm), family='serif',color='black',rotation=0,fontsize=12,ha='right')440ax.text(1.9,-0.225-0.225,r'$\varepsilon = %10.5s^{%10.5s}_{%10.5s}$' %(IDE2_e,IDE2_ep,IDE2_em), family='serif',color='black',rotation=0,fontsize=12,ha='right')441ax.set_xlabel(r"$\omega$", fontsize = 18)442ax.set_ylabel(r"$\varepsilon$", fontsize = 18)443# Plot limits444ax.set_xlim(-5.0,2)445ax.set_ylim(-0.5,0.5)446#ax.set_xticklabels(['','',-1.5,'',-1.0,'',-0.5,'',''])447plt.minorticks_on()448ax.tick_params(which = 'both', bottom=True, top=True, left=True, right=True, direction="in")449ax.legend(loc='upper right',frameon=False,fontsize=12)450#plt.show()451plt.close()452c.remove_chain('IDE2')453### IDE4 PLOT454name = IDE4.__name__455# The actual chain this code is about456c.add_chain(IDE4_COBAYA_CHAIN[500:], parameters=label_IDE4, linewidth=2.0, name=name, kde=1.5, color="red",num_free_params=len(begin_IDE1)).configure(summary=True, shade_alpha=0.2,statistics="max")457# Gets best fit and plus/​minus error 458IDE4_om = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]459IDE4_omp = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]460IDE4_omm = c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{m}$"][0]461IDE4_ol = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]462IDE4_olp = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][2]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]463IDE4_olm = c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][1]-c.analysis.get_summary(chains=name)[r"$\Omega_{x}$"][0]464IDE4_w = c.analysis.get_summary(chains=name)[r"$\omega$"][1]465IDE4_wp =c.analysis.get_summary(chains=name)[r"$\omega$"][2]-c.analysis.get_summary(chains=name)[r"$\omega$"][1]466IDE4_wm =c.analysis.get_summary(chains=name)[r"$\omega$"][1]-c.analysis.get_summary(chains=name)[r"$\omega$"][0]467IDE4_e = c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]468IDE4_ep =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][2]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]469IDE4_em =c.analysis.get_summary(chains=name)[r"$\varepsilon$"][1]-c.analysis.get_summary(chains=name)[r"$\varepsilon$"][0]470fig, ax = plt.subplots(1, 1)471# Selectings which params to plot and on what axis472c.plotter.plot_contour(ax,r"$\omega$", r"$\varepsilon$") 473# Unique to model474ax.axhline(0,color = 'k', ls = ':', linewidth=1, zorder = 1)475ax.scatter(-1, 0, marker = 'x', s = 70, c='black', zorder = 3)476ax.text(1.9,-0.225,'$\Omega_m = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_om,IDE4_omp,IDE4_omm), family='serif',color='black',rotation=0,fontsize=12,ha='right') 477ax.text(1.9,-0.225-0.075,r'$\Omega_x = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_ol,IDE4_olp,IDE4_olm), family='serif',color='black',rotation=0,fontsize=12,ha='right')478ax.text(1.9,-0.225-0.15,r'$\omega = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_w,IDE4_wp,IDE4_wm), family='serif',color='black',rotation=0,fontsize=12,ha='right')479ax.text(1.9,-0.225-0.225,r'$\varepsilon = %10.5s^{%10.5s}_{%10.5s}$' %(IDE4_e,IDE4_ep,IDE4_em), family='serif',color='black',rotation=0,fontsize=12,ha='right')480ax.set_xlabel(r"$\omega$", fontsize = 18)481ax.set_ylabel(r"$\varepsilon$", fontsize = 18)482# Plot limits483ax.set_xlim(-5.0,2)...

Full Screen

Full Screen

test_space_info.py

Source: test_space_info.py Github

copy

Full Screen

...13 configuration = get_default_test_configuration()14 gateway = get_default_storm_gateway()15 spaceinfo = SpaceInfoBuilder(configuration, gateway).build()16 expected_summary = get_default_space_info_summary()17 self.assertEqual(spaceinfo.get_summary().get_total(), expected_summary.get_total())18 self.assertEqual(spaceinfo.get_summary().get_available(), expected_summary.get_available())19 self.assertEqual(spaceinfo.get_summary().get_used(), expected_summary.get_used())20 self.assertEqual(spaceinfo.get_summary().get_free(), expected_summary.get_free())21 self.assertEqual(spaceinfo.get_summary().get_unavailable(), expected_summary.get_unavailable())22 self.assertEqual(spaceinfo.get_summary().get_reserved(), expected_summary.get_reserved())23 self.assertEqual(spaceinfo.get_summary().get_busy(), expected_summary.get_busy())24 self.assertEqual(spaceinfo.get_summary().get_nearline(), expected_summary.get_nearline())25 def test_space_info_builder_with_default_configuration_but_serving_state_closed(self):26 configuration = get_default_test_configuration()27 configuration.set("STORM_SERVING_STATE", "closed")28 gateway = get_default_storm_gateway()29 spaceinfo = SpaceInfoBuilder(configuration, gateway).build()30 expected_summary = get_default_space_info_summary_from_configuration()31 self.assertEqual(spaceinfo.get_summary().get_total(), expected_summary.get_total())32 self.assertEqual(spaceinfo.get_summary().get_available(), expected_summary.get_available())33 self.assertEqual(spaceinfo.get_summary().get_used(), expected_summary.get_used())34 self.assertEqual(spaceinfo.get_summary().get_free(), expected_summary.get_free())35 self.assertEqual(spaceinfo.get_summary().get_unavailable(), expected_summary.get_unavailable())36 self.assertEqual(spaceinfo.get_summary().get_reserved(), expected_summary.get_reserved())37 self.assertEqual(spaceinfo.get_summary().get_busy(), expected_summary.get_busy())...

Full Screen

Full Screen

Blogs

Check out the latest blogs from LambdaTest on this topic:

Test Optimization for Continuous Integration

“Test frequently and early.” If you’ve been following my testing agenda, you’re probably sick of hearing me repeat that. However, it is making sense that if your tests detect an issue soon after it occurs, it will be easier to resolve. This is one of the guiding concepts that makes continuous integration such an effective method. I’ve encountered several teams who have a lot of automated tests but don’t use them as part of a continuous integration approach. There are frequently various reasons why the team believes these tests cannot be used with continuous integration. Perhaps the tests take too long to run, or they are not dependable enough to provide correct results on their own, necessitating human interpretation.

A Complete Guide To CSS Houdini

As a developer, checking the cross browser compatibility of your CSS properties is of utmost importance when building your website. I have often found myself excited to use a CSS feature only to discover that it’s still not supported on all browsers. Even if it is supported, the feature might be experimental and not work consistently across all browsers. Ask any front-end developer about using a CSS feature whose support is still in the experimental phase in most prominent web browsers. ????

Different Ways To Style CSS Box Shadow Effects

Have you ever visited a website that only has plain text and images? Most probably, no. It’s because such websites do not exist now. But there was a time when websites only had plain text and images with almost no styling. For the longest time, websites did not focus on user experience. For instance, this is how eBay’s homepage looked in 1999.

Fluent Interface Design Pattern in Automation Testing

Recently, I was going through some of the design patterns in Java by reading the book Head First Design Patterns by Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra.

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run prospector automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful