How to use set_csp method in Playwright Python

Best Python code snippet using playwright-python

core_z3.py

Source:core_z3.py Github

copy

Full Screen

...9import pandas as pd10# Global variables to be used later on.11var = {} # to store the variables of the csp12s = None13def set_csp(pos_x, neg_x, n, k):14 """Creates the variables and the constraints for a given number of nodes."""15 # Create a dictionary to store all the variables16 global var17 var = {}18 def get_lr(i):19 """20 Given a node i, returns all its possible left children.21 LR(i) = even([i + 1, min(2i, n − 1)]), i = 1,...,n22 """23 return tuple([_ for _ in range(i + 1, min(2 * i, n - 1) + 1) if _ % 2 == 0])24 def get_rr(i):25 """26 Given a node i, returns all its possible right children.27 RR(i) = odd([i + 2, min(2i + 1, n )]), i=1,...,n28 """29 return tuple([_ for _ in range(i + 2, min(2 * i + 1, n) + 1) if _ % 2 != 0])30 # Create the variables.31 # Create a variable 'v' for each node in the tree32 # It is True iff node i is a leaf node33 for i in range(1, n + 1):34 var['v%i' % i] = Bool('v%i' % i)35 # Create a variable 'l' for each possible left child of current node36 # It is True iff node i has node j as left child37 for i in range(1, n + 1):38 for j in get_lr(i):39 var['l%i,%i' % (i, j)] = Bool('l%i,%i' % (i, j))40 # Create a variable 'r' for each possible right child of current node41 # It is True iff node i has node j as right child42 for i in range(1, n + 1):43 for j in get_rr(i):44 var['r%i,%i' % (i, j)] = Bool('r%i,%i' % (i, j))45 # Create a variable 'p' to tell the parent of current node46 # It is True iff the parent of node j is node i47 for i in range(1, n):48 for j in range(i + 1, min(2 * i + 1, n) + 1):49 var['p%i,%i' % (j, i)] = Bool('p%i,%i' % (j, i))50 # Create a variable 'a' for each couple (node, feature)51 # It is True iff feature r is assigned to node j52 for i in range(1, k + 1):53 for j in range(1, n + 1):54 var['a%i,%i' % (i, j)] = Bool('a%i,%i' % (i, j))55 # Create a variable 'u' for each couple (node, feature)56 # It is True iff feature r is being discriminated against by node j57 for i in range(1, k + 1):58 for j in range(1, n + 1):59 var['u%i,%i' % (i, j)] = Bool('u%i,%i' % (i, j))60 # Create a variable 'd0' for each couple (node, feature)61 # It is True iff feature r is discriminated for value 0 by node j62 # or by one of its ancestors63 for i in range(1, k + 1):64 for j in range(1, n + 1):65 var['d0%i,%i' % (i, j)] = Bool('d0%i,%i' % (i, j))66 # Create a variable 'd1' for each couple (node, feature)67 # It is True iff feature r is discriminated for value 1 by node j68 # or by one of its ancestors69 for i in range(1, k + 1):70 for j in range(1, n + 1):71 var['d1%i,%i' % (i, j)] = Bool('d1%i,%i' % (i, j))72 # Create a variable 'c' for each node.73 # It is True iff class of leaf node j is 174 for j in range(1, n + 1):75 var['c%i' % j] = Bool('c%i' % j)76 # Constraints.77 global s78 s = Solver()79 # enable multithreading80 set_param('parallel.enable', True)81 # TREE BUILDING CONSTRAINTS82 # These constraints allow to represent a full binary tree, that is a tree83 # in which each node has exactly 0 or 2 children. Since the tree cannot be84 # made up by the root alone, the number of nodes 'n' must be an odd number >= 3.85 # Given n, the constraints permit to find all the possible full binary trees86 # which can be built with n nodes. The number of legit trees with n nodes87 # is given by the Catalan numbers sequence.88 # Constraint 1: the root node is not a leaf.89 # NOT v190 s.add(Not(var['v1']))91 # Constraint 2: if a node is a leaf node, then it has no children.92 # vi -> NOT li,j, j in LR(i)93 for i in range(1, n + 1):94 for j in get_lr(i):95 s.add(Implies(var['v%i' % i], Not(var['l%i,%i' % (i, j)])))96 # Constraint 3: the left child and the right child of the i-th node97 # are numbered consecutively.98 # li,j <-> ri,j+1, j in LR(i)99 for i in range(1, n + 1):100 for j in get_lr(i):101 s.add(Implies(var['l%i,%i' % (i, j)], var['r%i,%i' % (i, j + 1)]))102 s.add(Implies(var['r%i,%i' % (i, j + 1)], var['l%i,%i' % (i, j)]))103 # Constraint 4: a non-leaf node must have a child.104 # NOT vi -> (SUM for j in LR(i) of li,j = 1)105 for i in range(1, n + 1):106 sum_list = []107 for j in get_lr(i):108 sum_list.append(var['l%i,%i' % (i, j)])109 exp = PbEq([(x, 1) for x in sum_list], 1)110 s.add(Implies(Not(var['v%i' % i]), exp))111 # Constraint 5: if the i-th node is a parent then it must have a child112 # pj,i <-> li,j, j in LR(i)113 # pj,i <-> ri,j, j in RR(i)114 for i in range(1, n + 1):115 for j in get_lr(i):116 s.add(Implies(var['p%i,%i' % (j, i)], var['l%i,%i' % (i, j)]))117 s.add(Implies(var['l%i,%i' % (i, j)], var['p%i,%i' % (j, i)]))118 for j in get_rr(i):119 s.add(Implies(var['p%i,%i' % (j, i)], var['r%i,%i' % (i, j)]))120 s.add(Implies(var['r%i,%i' % (i, j)], var['p%i,%i' % (j, i)]))121 # Constraint 6: all the nodes but the first must have a parent.122 # (SUM for i=floor(j/2), min(j-1, N) of pj,i = 1), j =2,...,n123 for j in range(2, n + 1):124 sum_list = []125 for i in range(floor(j / 2), min(j - 1, n) + 1):126 sum_list.append(var['p%i,%i' % (j, i)])127 exp = PbEq([(x, 1) for x in sum_list], 1)128 s.add(exp)129 '''130 # Constraint 6.1: each left/right child must have exactly a parent131 for j in range(2, n + 1):132 left_list = []133 right_list = []134 for i in range(1, n):135 if 'l%i,%i' % (i, j) in var:136 left_list.append(var['l%i,%i' % (i, j)])137 if 'r%i,%i' % (i, j) in var:138 right_list.append(var['r%i,%i' % (i, j)])139 if len(left_list) > 0:140 s.add(PbLe([(x, 1) for x in left_list], 1))141 if len(right_list) > 0:142 s.add(PbLe([(x, 1) for x in right_list], 1))143 '''144 # '''145 # Constraint 6.2: nodes on the same level must be labeled increasingly146 # li,j -> lh,(j-2), and ri,j -> rh,(j-2), h < i147 for i in range(n - 2, 0, -1):148 for j in reversed(get_lr(i)):149 if 'l%i,%i' % (i, j) in var:150 node_list = []151 for h in range(i - 1, 0, -1):152 if 'l%i,%i' % (h, j - 2) in var:153 node_list.append(var['l%i,%i' % (h, j - 2)])154 if len(node_list) > 0:155 s.add(Implies(var['l%i,%i' % (i, j)], PbGe([(x, 1) for x in node_list], 1)))156 for j in reversed(get_rr(i)):157 if 'r%i,%i' % (i, j) in var:158 node_list = []159 for h in range(i - 1, 0, -1):160 if 'r%i,%i' % (h, j - 2) in var:161 node_list.append(var['r%i,%i' % (h, j - 2)])162 if len(node_list) > 0:163 s.add(Implies(var['r%i,%i' % (i, j)], PbGe([(x, 1) for x in node_list], 1)))164 # '''165 # LEARNING CONSTRAINTS166 # These constraints allow to learn a decision tree starting from a167 # dataset of binary features. The resulting tree is represented168 # as a total assignment to the variables. The values of these variables169 # must be used to build a tree and implement the classifier.170 # Constraint 7: to discriminate a feature for value 0 at node j = 2,...,n171 # d0r,j <-> (OR for i=floor(j/2), j-1 of ((pj,i AND d0r,i) OR (ar,i AND ri,j)))172 # d0r,1 = 0173 for r in range(1, k + 1):174 s.add(Not(var['d0%i,%i' % (r, 1)])) # d0r,1 = 0175 for j in range(2, n + 1):176 or_list = []177 for i in range(floor(j / 2), j):178 if i >= 1 and (j in get_lr(i) or j in get_rr(i)) and 'r%i,%i' % (i, j) in var:179 or_list.append(Or(And(var['p%i,%i' % (j, i)], var['d0%i,%i' % (r, i)]),180 And(var['a%i,%i' % (r, i)], var['r%i,%i' % (i, j)])))181 s.add(Implies(var['d0%i,%i' % (r, j)], Or(or_list)))182 s.add(Implies(Or(or_list), var['d0%i,%i' % (r, j)]))183 # Constraint 8: to discriminate a feature for value 1 at node j = 2,...,n184 # d1r,j <-> (OR for i=floor(j/2), j-1 of ((pj,i AND d1r,i) OR (ar,i AND li,j)))185 # d1r,1 = 0186 for r in range(1, k + 1):187 s.add(Not(var['d1%i,%i' % (r, 1)])) # d1r,1 = 0188 for j in range(2, n + 1):189 or_list = []190 for i in range(floor(j / 2), j):191 if i >= 1 and (j in get_lr(i) or j in get_rr(i)) and 'l%i,%i' % (i, j) in var:192 or_list.append(Or(And(var['p%i,%i' % (j, i)], var['d1%i,%i' % (r, i)]),193 And(var['a%i,%i' % (r, i)], var['l%i,%i' % (i, j)])))194 s.add(Implies(var['d1%i,%i' % (r, j)], Or(or_list)))195 s.add(Implies(Or(or_list), var['d1%i,%i' % (r, j)]))196 # Constraint 9: using a feature r at node j, r = 1,...,k, j = 1,...,n197 # AND for i = floor(j/2), j-1 of (ur,i ^ pj,i -> -ar,j)198 # ur,j <-> (ar,j OR (OR for i = floor(j/2), j-1 of (ur,j AND pj,i)))199 for r in range(1, k + 1):200 for j in range(1, n + 1):201 and_list = []202 or_list = []203 for i in range(floor(j / 2), j):204 if i >= 1: # and j in getLR(i) or j in getRR(i):205 # ur,i ^ pj,i -> -ar,j206 and_list.append(207 Implies(And(var['u%i,%i' % (r, i)], var['p%i,%i' % (j, i)]), Not(var['a%i,%i' % (r, j)])))208 # AND for i = floor(j/2), j-1 of (ur,i ^ pj,i -> -ar,j)209 s.add(And(and_list))210 or_list.append(And(var['u%i,%i' % (r, i)], var['p%i,%i' % (j, i)]))211 s.add(Implies(var['u%i,%i' % (r, j)], Or(var['a%i,%i' % (r, j)], *or_list)))212 s.add(Implies(Or(var['a%i,%i' % (r, j)], *or_list), var['u%i,%i' % (r, j)]))213 # Constraint 10: for a non-leaf node j, exactly one feature is used214 # NOT vj -> (SUM for r=1, k of ar,j = 1)215 for j in range(1, n + 1):216 sum_list = []217 for r in range(1, k + 1):218 sum_list.append(var['a%i,%i' % (r, j)])219 exp = PbEq([(x, 1) for x in sum_list], 1)220 s.add(Implies(Not(var['v%i' % j]), exp))221 # Constraint 11: for a leaf node j, no feature is used222 # vj -> (SUM for r=1, k of ar,j = 0)223 for j in range(1, n + 1):224 sum_list = []225 for r in range(1, k + 1):226 sum_list.append(var['a%i,%i' % (r, j)])227 exp = Not(Or(sum_list))228 s.add(Implies(var['v%i' % j], exp))229 # Constraint 12: any positive example must be discriminated if the leaf230 # node is associated with the negative class.231 # vj AND NOT cj -> OR for r=1, k of d*r,j232 # * = 0 if current training example's feature value is 0233 # * = 1 if current training example's feature value is 1234 for example in pos_x:235 for j in range(1, n + 1):236 or_list = []237 for r in range(1, k + 1):238 if example[r - 1] == 0:239 or_list.append(var['d0%i,%i' % (r, j)])240 else:241 or_list.append(var['d1%i,%i' % (r, j)])242 s.add(Implies(And(var['v%i' % j], Not(var['c%i' % j])), Or(or_list)))243 # Constraint 13: any negative example must be discriminated if the leaf244 # node is associated with the positive class.245 # vj AND cj -> OR for r=1, k of d*r,j246 # * = 0 if current training example's feature value is 0247 # * = 1 if current training example's feature value is 1248 for example in neg_x:249 for j in range(1, n + 1):250 or_list = []251 for r in range(1, k + 1):252 if example[r - 1] == 0:253 or_list.append(var['d0%i,%i' % (r, j)])254 else:255 or_list.append(var['d1%i,%i' % (r, j)])256 s.add(Implies(And(var['v%i' % j], var['c%i' % j]), Or(or_list)))257 # Constraint 13.1: only a leaf node can be associated to a class.258 # ci -> vi, i=1,..,n259 for i in range(1, n + 1):260 s.add(Implies(var['c%i' % i], var['v%i' % i]))261 #'''262 # Additional constraint 1263 for i in range(1, n + 1):264 for t in range(0, n + 1):265 var['_lambda%i,%i' % (t, i)] = Bool('_lambda%i,%i' % (t, i))266 var['_tau%i,%i' % (t, i)] = Bool('_tau%i,%i' % (t, i))267 # lambda0,i = 1, tau0,i = 1268 if t == 0:269 s.add(var['_lambda%i,%i' % (t, i)])270 s.add(var['_tau%i,%i' % (t, i)])271 for i in range(1, n + 1):272 for t in range(1, floor(i / 2) + 1):273 if i > 1:274 # lambda t,i -> (lambda t,i-1 OR lambda t-1,i-1 AND vi)275 s.add(Implies(var['_lambda%i,%i' % (t, i)], Or(var['_lambda%i,%i' % (t, i - 1)],276 And(var['_lambda%i,%i' % (t - 1, i - 1)],277 var['v%i' % i]))))278 # (lambda t,i-1 OR lambda t-1,i-1 AND vi) -> lambda t,i279 s.add(Implies(280 Or(var['_lambda%i,%i' % (t, i - 1)], And(var['_lambda%i,%i' % (t - 1, i - 1)], var['v%i' % i])),281 var['_lambda%i,%i' % (t, i)]))282 for t in range(1, i + 1):283 if i > 1:284 # tau t,i -> (tau t,i-1 OR tau t-1,i-1 AND vi)285 s.add(Implies(var['_tau%i,%i' % (t, i)], Or(var['_tau%i,%i' % (t, i - 1)],286 And(var['_tau%i,%i' % (t - 1, i - 1)],287 Not(var['v%i' % i])))))288 # (tau t,i-1 OR tau t-1,i-1 AND vi) -> tau t,i289 s.add(Implies(290 Or(var['_tau%i,%i' % (t, i - 1)], And(var['_tau%i,%i' % (t - 1, i - 1)], Not(var['v%i' % i]))),291 var['_tau%i,%i' % (t, i)]))292 # Additional constraint 2293 for i in range(1, n + 1):294 for t in range(1, floor(i / 2) + 1):295 if 'l%i,%i' % (i, 2 * (i - t + 1)) in var and 'r%i,%i' % (i, 2 * (i - t + 1) + 1) in var:296 s.add(Implies(var['_lambda%i,%i' % (t, i)], And(Not(var['l%i,%i' % (i, 2 * (i - t + 1))]),297 Not(var['r%i,%i' % (i, 2 * (i - t + 1) + 1)]))))298 for t in range(ceil(i / 2), i + 1):299 if 'l%i,%i' % (i, 2 * (t - 1)) in var and 'r%i,%i' % (i, 2 * (t - 1)) in var:300 s.add(Implies(var['_tau%i,%i' % (t, i)], And(Not(var['l%i,%i' % (i, 2 * (t - 1))]),301 Not(var['r%i,%i' % (i, 2 * t - 1)]))))302 #'''303def get_solution(x_values, y_values, target_nodes):304 """ Returns all the possible solutions, or an empty tuple if no solution is found."""305 n = target_nodes # number of nodes306 # select only the rows where the target feature equals 1307 pos_x = x_values[y_values.astype(np.bool), :]308 # select only the rows where the target feature equals 0309 neg_x = x_values[~y_values.astype(np.bool), :]310 k = len(x_values[0])311 set_csp(pos_x, neg_x, n, k)312 global s313 status = s.check()314 solution = None315 if status == z3.sat:316 m = s.model()317 v_var = {}318 l_var = {}319 r_var = {}320 a_var = {}321 c_var = {}322 global var323 for k, v in var.items():324 try:325 if k.startswith('v'):...

Full Screen

Full Screen

server.py

Source:server.py Github

copy

Full Screen

...121 self.request_subscribers[path] = future122 return await future123 def set_auth(self, path: str, username: str, password: str):124 self.auth[path] = (username, password)125 def set_csp(self, path: str, value: str):126 self.csp[path] = value127 def reset(self):128 self.request_subscribers.clear()129 self.auth.clear()130 self.csp.clear()131 self.gzip_routes.clear()132 self.routes.clear()133 def set_route(self, path, callback):134 self.routes[path] = callback135 def enable_gzip(self, path):136 self.gzip_routes.add(path)137 def set_redirect(self, from_, to):138 def handle_redirect(request):139 request.setResponseCode(HTTPStatus.FOUND)...

Full Screen

Full Screen

csp.py

Source:csp.py Github

copy

Full Screen

...10 self.domains = {}11 self.assertions = []12 self.stack = []13 def add_domain(self, domainname, domain):14 domain.set_csp( self )15 if len( self.domains ) == 0:16 self.topdomain = domain17 self.domains[ domainname ] = domain18 self.dnames.append( domainname )19 def add_assertion(self, assertion):20 self.assertions.append( assertion )21 assertion.set_csp( self )22 def set_goal(self, goal):23 self.goal = goal24 goal.set_csp( self )25 def run(self):26 27 solutions = 028 while True:29 ret = False30 tuple = Tuple()31 ret = self.recurse_domains( deque( self.dnames ), tuple )32 if ret:33 self.assertTuple( tuple )34 self.stack.append( tuple )35 if self.goal.goal_reached():36 print "goal reached..."37 solutions += 138 for tuple in self.stack:...

Full Screen

Full Screen

domain.py

Source:domain.py Github

copy

Full Screen

...5 self.curgen = None6 self.generators = []7 self.curval = None8 self.curvals = []9 def set_csp(self, csp):10 self.csp = csp11 def stack_size(self):12 return len(self.generators)13 def push_generator(self, tuple):14 self.generators.append( self.curgen )15 self.curgen = self.get_generator( tuple )16 self.curvals.append( self.curval )17 self.curval = None18 def refresh_generator(self, tuple):19 self.curgen = self.get_generator( tuple )20 self.curval = None 21 def pop_generator(self):22 if len(self.generators) > 0:23 self.curgen = self.generators.pop()...

Full Screen

Full Screen

Playwright tutorial

LambdaTest’s Playwright tutorial will give you a broader idea about the Playwright automation framework, its unique features, and use cases with examples to exceed your understanding of Playwright testing. This tutorial will give A to Z guidance, from installing the Playwright framework to some best practices and advanced concepts.

Chapters:

  1. What is Playwright : Playwright is comparatively new but has gained good popularity. Get to know some history of the Playwright with some interesting facts connected with it.
  2. How To Install Playwright : Learn in detail about what basic configuration and dependencies are required for installing Playwright and run a test. Get a step-by-step direction for installing the Playwright automation framework.
  3. Playwright Futuristic Features: Launched in 2020, Playwright gained huge popularity quickly because of some obliging features such as Playwright Test Generator and Inspector, Playwright Reporter, Playwright auto-waiting mechanism and etc. Read up on those features to master Playwright testing.
  4. What is Component Testing: Component testing in Playwright is a unique feature that allows a tester to test a single component of a web application without integrating them with other elements. Learn how to perform Component testing on the Playwright automation framework.
  5. Inputs And Buttons In Playwright: Every website has Input boxes and buttons; learn about testing inputs and buttons with different scenarios and examples.
  6. Functions and Selectors in Playwright: Learn how to launch the Chromium browser with Playwright. Also, gain a better understanding of some important functions like “BrowserContext,” which allows you to run multiple browser sessions, and “newPage” which interacts with a page.
  7. Handling Alerts and Dropdowns in Playwright : Playwright interact with different types of alerts and pop-ups, such as simple, confirmation, and prompt, and different types of dropdowns, such as single selector and multi-selector get your hands-on with handling alerts and dropdown in Playright testing.
  8. Playwright vs Puppeteer: Get to know about the difference between two testing frameworks and how they are different than one another, which browsers they support, and what features they provide.
  9. Run Playwright Tests on LambdaTest: Playwright testing with LambdaTest leverages test performance to the utmost. You can run multiple Playwright tests in Parallel with the LammbdaTest test cloud. Get a step-by-step guide to run your Playwright test on the LambdaTest platform.
  10. Playwright Python Tutorial: Playwright automation framework support all major languages such as Python, JavaScript, TypeScript, .NET and etc. However, there are various advantages to Python end-to-end testing with Playwright because of its versatile utility. Get the hang of Playwright python testing with this chapter.
  11. Playwright End To End Testing Tutorial: Get your hands on with Playwright end-to-end testing and learn to use some exciting features such as TraceViewer, Debugging, Networking, Component testing, Visual testing, and many more.
  12. Playwright Video Tutorial: Watch the video tutorials on Playwright testing from experts and get a consecutive in-depth explanation of Playwright automation testing.

Run Playwright Python automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful