Best Python code snippet using playwright-python
prepare_slave_param_csv_vtest2.py
Source:prepare_slave_param_csv_vtest2.py
1##This function writes the parameters and master decision variables into a csv file for the slave to read2def prepare_slave_param_csv_vtest2 (var_converted, demand, weather_data, piecewise_steps):3 ##var_converted --- essentially just the master decision variables 4 ##demand --- demand data 5 ##weather_data --- weather data 6 ##piecewise_steps --- the piecewise linear steps7 8 mdv_slave_param = nwk_choice_3_mdv (var_converted, demand, weather_data, piecewise_steps)9 10 return mdv_slave_param11############################################################################################################################################################################12############################################################################################################################################################################13############################################################################################################################################################################14##Additional functions 15##A function to prepare the return values if the network choice is 316def nwk_choice_3_mdv (var_converted, demand, weather_and_ct_coeff, piecewise_steps):17 ##var_converted --- essentially just the master decision variables 18 ##demand --- demand data 19 ##weather_data --- weather data 20 ##piecewise_steps --- the piecewise linear steps21 22 import pandas as pd23 24 ##Initiate dataframe to hold the written values 25 mdv_slave_param = pd.DataFrame(columns = ['Name', 'Value', 'Unit'])26 27 ##############################################################################################################28 ##chiller_evap_flow_consol_4nc 29 input_value = {}30 input_value['Name'] = 'chiller_evap_flow_consol_4nc_tenwkflow' 31 input_value['Value'] = var_converted[1]32 input_value['Unit'] = 'm3/h'33 34 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]35 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])36 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 37 38 ############################################################################################################## 39 ##chiller_ret_4nc40 input_value = {}41 input_value['Name'] = 'chiller_ret_4nc_etret' 42 input_value['Value'] = var_converted[0]43 input_value['Unit'] = 'K'44 45 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]46 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])47 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 48 49 ##############################################################################################################50 ##chiller1_evap_4nc 51 input_value = {}52 input_value['Name'] = 'chiller1_evap_4nc_etret' 53 input_value['Value'] = var_converted[0]54 input_value['Unit'] = 'K'55 56 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]57 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])58 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 59 60 input_value = {}61 input_value['Name'] = 'chiller1_evap_4nc_ctin' 62 input_value['Value'] = var_converted[2]63 input_value['Unit'] = 'K'64 65 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]66 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])67 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 68 69 input_value = {}70 input_value['Name'] = 'chiller1_evap_4nc_tenwkflow' 71 input_value['Value'] = var_converted[1]72 input_value['Unit'] = 'm3/h'73 74 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]75 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])76 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 77 78 input_value = {}79 input_value['Name'] = 'chiller1_evap_4nc_piecewise_steps' 80 input_value['Value'] = piecewise_steps81 input_value['Unit'] = '-'82 83 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]84 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])85 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 86 87 ############################################################################################################## 88 ##chiller1_evap_nwk_4nc89 input_value = {}90 input_value['Name'] = 'chiller1_evap_nwk_4nc_piecewise_steps' 91 input_value['Value'] = piecewise_steps92 input_value['Unit'] = '-'93 94 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]95 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])96 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 97 input_value = {}98 input_value['Name'] = 'chiller1_evap_nwk_4nc_tenwkflow' 99 input_value['Value'] = var_converted[1]100 input_value['Unit'] = 'm3/h'101 102 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]103 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])104 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True)105 ##############################################################################################################106 ##chiller1_evap_pump_4nc 107 input_value = {}108 input_value['Name'] = 'chiller1_evap_pump_4nc_piecewise_steps' 109 input_value['Value'] = piecewise_steps110 input_value['Unit'] = '-'111 112 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]113 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])114 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 115 116 ############################################################################################################## 117 ##chiller2_evap_4nc118 input_value = {}119 input_value['Name'] = 'chiller2_evap_4nc_etret' 120 input_value['Value'] = var_converted[0]121 input_value['Unit'] = 'K'122 123 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]124 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])125 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 126 input_value = {}127 input_value['Name'] = 'chiller2_evap_4nc_ctin' 128 input_value['Value'] = var_converted[2]129 input_value['Unit'] = 'K'130 131 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]132 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])133 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 134 135 input_value = {}136 input_value['Name'] = 'chiller2_evap_4nc_tenwkflow' 137 input_value['Value'] = var_converted[1]138 input_value['Unit'] = 'm3/h'139 140 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]141 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])142 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 143 144 input_value = {}145 input_value['Name'] = 'chiller2_evap_4nc_piecewise_steps' 146 input_value['Value'] = piecewise_steps147 input_value['Unit'] = '-'148 149 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]150 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])151 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 152 153 ############################################################################################################## 154 ##chiller2_evap_nwk_4nc155 input_value = {}156 input_value['Name'] = 'chiller2_evap_nwk_4nc_piecewise_steps' 157 input_value['Value'] = piecewise_steps158 input_value['Unit'] = '-'159 160 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]161 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])162 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 163 input_value = {}164 input_value['Name'] = 'chiller2_evap_nwk_4nc_tenwkflow' 165 input_value['Value'] = var_converted[1]166 input_value['Unit'] = 'm3/h'167 168 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]169 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])170 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True)171 172 ##############################################################################################################173 ##chiller2_evap_pump_4nc 174 input_value = {}175 input_value['Name'] = 'chiller2_evap_pump_4nc_piecewise_steps' 176 input_value['Value'] = piecewise_steps177 input_value['Unit'] = '-'178 179 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]180 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])181 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 182 183 ############################################################################################################## 184 ##chiller3_evap_4nc185 input_value = {}186 input_value['Name'] = 'chiller3_evap_4nc_etret' 187 input_value['Value'] = var_converted[0]188 input_value['Unit'] = 'K'189 190 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]191 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])192 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 193 input_value = {}194 input_value['Name'] = 'chiller3_evap_4nc_ctin' 195 input_value['Value'] = var_converted[2]196 input_value['Unit'] = 'K'197 198 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]199 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])200 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 201 202 input_value = {}203 input_value['Name'] = 'chiller3_evap_4nc_tenwkflow' 204 input_value['Value'] = var_converted[1]205 input_value['Unit'] = 'm3/h'206 207 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]208 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])209 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 210 211 input_value = {}212 input_value['Name'] = 'chiller3_evap_4nc_piecewise_steps' 213 input_value['Value'] = piecewise_steps214 input_value['Unit'] = '-'215 216 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]217 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])218 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 219 220 ############################################################################################################## 221 ##chiller3_evap_nwk_4nc222 input_value = {}223 input_value['Name'] = 'chiller3_evap_nwk_4nc_piecewise_steps' 224 input_value['Value'] = piecewise_steps225 input_value['Unit'] = '-'226 227 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]228 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])229 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 230 input_value = {}231 input_value['Name'] = 'chiller3_evap_nwk_4nc_tenwkflow' 232 input_value['Value'] = var_converted[1]233 input_value['Unit'] = 'm3/h'234 235 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]236 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])237 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True)238 239 ##############################################################################################################240 ##chiller3_evap_pump_4nc 241 input_value = {}242 input_value['Name'] = 'chiller3_evap_pump_4nc_piecewise_steps' 243 input_value['Value'] = piecewise_steps244 input_value['Unit'] = '-'245 246 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]247 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])248 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True)249 250 ##############################################################################################################251 ##cp_nwk_4nc 252 input_value = {}253 input_value['Name'] = 'cp_nwk_4nc_tenwkflow' 254 input_value['Value'] = var_converted[1]255 input_value['Unit'] = 'm3/h'256 257 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]258 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])259 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 260 261 ##############################################################################################################262 ##dist_nwk_pump_4nc 263 input_value = {}264 input_value['Name'] = 'dist_nwk_pump_4nc_nwk_choice' 265 input_value['Value'] = 3266 input_value['Unit'] = '-'267 268 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]269 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])270 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 271 272 input_value = {}273 input_value['Name'] = 'dist_nwk_pump_4nc_piecewise_steps' 274 input_value['Value'] = piecewise_steps275 input_value['Unit'] = '-'276 277 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]278 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])279 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 280 281 ##############################################################################################################282 ##gv2_nwk_4nc 283 input_value = {}284 input_value['Name'] = 'gv2_nwk_4nc_piecewise_steps' 285 input_value['Value'] = piecewise_steps286 input_value['Unit'] = '-'287 288 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]289 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])290 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 291 292 input_value = {}293 input_value['Name'] = 'gv2_nwk_4nc_tenwkflow' 294 input_value['Value'] = var_converted[1]295 input_value['Unit'] = 'm3/h'296 297 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]298 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])299 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 300 ##############################################################################################################301 ##gv2_substation_4nc 302 input_value = {}303 input_value['Name'] = 'gv2_substation_4nc_demand' 304 input_value['Value'] = demand['ss_gv2_demand'][0]305 input_value['Unit'] = 'kWh'306 307 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]308 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])309 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 310 input_value = {}311 input_value['Name'] = 'gv2_substation_4nc_tenwkflow' 312 input_value['Value'] = var_converted[1]313 input_value['Unit'] = 'm3/h'314 315 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]316 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])317 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 318 ##############################################################################################################319 ##hsb_nwk_4nc 320 input_value = {}321 input_value['Name'] = 'hsb_nwk_4nc_piecewise_steps' 322 input_value['Value'] = piecewise_steps323 input_value['Unit'] = '-'324 325 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]326 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])327 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 328 329 input_value = {}330 input_value['Name'] = 'hsb_nwk_4nc_tenwkflow' 331 input_value['Value'] = var_converted[1]332 input_value['Unit'] = 'm3/h'333 334 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]335 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])336 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 337 ##############################################################################################################338 ##hsb_substation_4nc 339 input_value = {}340 input_value['Name'] = 'hsb_substation_4nc_demand' 341 input_value['Value'] = demand['ss_hsb_demand'][0]342 input_value['Unit'] = 'kWh'343 344 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]345 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])346 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 347 input_value = {}348 input_value['Name'] = 'hsb_substation_4nc_tenwkflow' 349 input_value['Value'] = var_converted[1]350 input_value['Unit'] = 'm3/h'351 352 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]353 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])354 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 355 ##############################################################################################################356 ##ice_nwk_4nc 357 input_value = {}358 input_value['Name'] = 'ice_nwk_4nc_piecewise_steps' 359 input_value['Value'] = piecewise_steps360 input_value['Unit'] = '-'361 362 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]363 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])364 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 365 366 input_value = {}367 input_value['Name'] = 'ice_nwk_4nc_tenwkflow' 368 input_value['Value'] = var_converted[1]369 input_value['Unit'] = 'm3/h'370 371 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]372 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])373 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 374 375 ##############################################################################################################376 ##pfa_nwk_4nc 377 input_value = {}378 input_value['Name'] = 'pfa_nwk_4nc_piecewise_steps' 379 input_value['Value'] = piecewise_steps380 input_value['Unit'] = '-'381 382 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]383 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])384 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 385 386 input_value = {}387 input_value['Name'] = 'pfa_nwk_4nc_tenwkflow' 388 input_value['Value'] = var_converted[1]389 input_value['Unit'] = 'm3/h'390 391 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]392 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])393 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 394 ##############################################################################################################395 ##pfa_substation_4nc 396 input_value = {}397 input_value['Name'] = 'pfa_substation_4nc_demand' 398 input_value['Value'] = demand['ss_pfa_demand'][0]399 input_value['Unit'] = 'kWh'400 401 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]402 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])403 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 404 input_value = {}405 input_value['Name'] = 'pfa_substation_4nc_tenwkflow' 406 input_value['Value'] = var_converted[1]407 input_value['Unit'] = 'm3/h'408 409 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]410 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])411 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 412 413 ##############################################################################################################414 ##ser_nwk_4nc 415 input_value = {}416 input_value['Name'] = 'ser_nwk_4nc_piecewise_steps' 417 input_value['Value'] = piecewise_steps418 input_value['Unit'] = '-'419 420 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]421 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])422 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 423 424 input_value = {}425 input_value['Name'] = 'ser_nwk_4nc_tenwkflow' 426 input_value['Value'] = var_converted[1]427 input_value['Unit'] = 'm3/h'428 429 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]430 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])431 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 432 ##############################################################################################################433 ##ser_substation_4nc 434 input_value = {}435 input_value['Name'] = 'ser_substation_4nc_demand' 436 input_value['Value'] = demand['ss_ser_demand'][0]437 input_value['Unit'] = 'kWh'438 439 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]440 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])441 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 442 input_value = {}443 input_value['Name'] = 'ser_substation_4nc_tenwkflow' 444 input_value['Value'] = var_converted[1]445 input_value['Unit'] = 'm3/h'446 447 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]448 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])449 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 450 451 ##############################################################################################################452 ##tro_nwk_4nc 453 input_value = {}454 input_value['Name'] = 'tro_nwk_4nc_piecewise_steps' 455 input_value['Value'] = piecewise_steps456 input_value['Unit'] = '-'457 458 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]459 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])460 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True) 461 462 input_value = {}463 input_value['Name'] = 'tro_nwk_4nc_tenwkflow' 464 input_value['Value'] = var_converted[1]465 input_value['Unit'] = 'm3/h'466 467 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]468 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])469 mdv_slave_param = mdv_slave_param.append(temp_df, ignore_index=True)470 471 return mdv_slave_param...
units.py
Source:units.py
1import numpy as np2import sys3import json4def fetch_unit_list(cur):5 #TODO Fetch from db and parse as a dict of dicts6 cur.execute('USE unit_list_chembddb;')7 cur.execute('SELECT unit_str from MAIN where id=1;')8 unit_list = cur.fetchall()9 print(unit_list)10 unit_list = json.loads(unit_list[0][0])11 return unit_list12def create_unit_list(cur,con):13 property_list = {14 'density':{'g/cm^3 (default)': 1.0, 'kg/m^3': 0.001, 'lb/ft^3': 62.43, 'lb/gal' : 8.35, 'kg/litre': 1.0},15 'energy':{'eV (default)': 1.0, 'Eh': 0.036749, 'J':1.6022e-19, 'Cal/mol':23061.0, 'J/mol':96487.0,'kJ/mol':96.487,'kJ':1.6022e-22,'kCal/mol':23.061, 'Cal':3.8293E-20,'kCal':3.83E-23},16 'polarizability':{'Bohr^3 (default)': 1.0, 'Angstrom': 0.14819},17 'solubility parameters':{'Cal^1/2 cm^-3/2 (default)': 1.0, 'J^1/2 m^-3/2': 2.05 * 10**3, 'MPa^1/2': 2.045},18 'dipole moment':{'Debye (default)': 1.0, 'C-m': 3.34 * 10**30, 'esu-cm': 1 * 10**-18, 'au': 0.3935},19 'quadrupole moment':{'C/m^2 (default)': 1.0, 'C/cm^2': 10000},20 'ratio': {'NA':1.0}21 }22 23 cur.execute('CREATE DATABASE unit_list_chembddb;')24 cur.execute('CREATE TABLE unit_list_chembddb.Main(`id` INT NOT NULL AUTO_INCREMENT, `unit_str` VARCHAR(10000) DEFAULT \'NONE\', PRIMARY KEY (`id`));')25 insert_unit_list(cur,con,property_list)26 return property_list27def insert_unit_list(cur,con,property_list):28 fordb = json.dumps(property_list)29 cur.execute('USE unit_list_chembddb;')30 cur.execute('INSERT INTO Main(id, unit_str) VALUE(1,%s);',[fordb])31 con.commit()32def unit_converter(prop, input_unit, input_val, output_unit):33 f1 = False34 if type(input_value) == float or type(input_value) == list:35 f1 = True36 37 if f1 == False:38 print("Please enter a valid data type of float or list")39 sys.exit()40 41 42 output_value = []43 density = {'g/cm^3': 1.0, 'kg/m^3': 1000.0, 'lb/ft^3': 62.43, 'lb/gal' : 8.35, 'kg/litre': 1.0}44 #dynamic_viscosity = {'kg_per_meter_second': 1.0, 'Poise': 0.1}45 #kinematic_viscosity = {'Stoke': 1.0, 'm^2_per_second': 1*10**-3}46 #mw = {'gram_per_mol': 1.0, 'kg_per_mol': 0.001, 'lb_per_mol' : 0.002205}47 #vdwr = {'pm': 1.0, 'angstrom': 0.01, 'm' : 1* 10**-12, 'cm': 1*10**-10, 'mm': 1*10**-9}48 #ir = {'pm': 1.0, 'angstrom': 0.01, 'm' : 1* 10**-12, 'cm': 1*10**-10, 'mm': 1*10**-9}49 en = {'eV': 1.0, 'Eh': 0.036749, 'J':1.6022e-19, 'Cal/mol':23061.0, 'J/mol':96487.0,'kJ/mol':96.487,'kJ':1.6022e-22,'kCal/mol':23.061, 'Cal':3.8293E-20,'kCal':3.83E-23}50 #pres = {'bar': 1.0, 'Pa': 1* 10**5, 'mmHg' : 750.062, 'psi': 14.5, 'atm': 0.987, 'torr': 750.062}51 #am = {'Da': 1.0, 'kg': 1.66 * 10**-27, 'amu' : 182.888, 'MeV_per_csquare': 931.494}52 pv = {'Bohr^3': 1.0, 'Angstrom': 0.14819}53 sp = {'Cal^1/2 cm^-3/2': 1.0, 'J^1/2 m^-3/2': 2.05 * 10**3, 'MPa^1/2': 2.045}54 dm = {'Debye': 1.0, 'C-m': 3.34 * 10**30, 'esu-cm': 1 * 10**-18, 'au': 0.3935}55 qm = {'C/m^2': 1.0, 'C/cm^2': 10000}56 57 # Unit conversion for density58 if prop.lower() in ['density','number density']:59 #output_value = []60 61 if type(input_value) == list:62 input_val = list(input_value)63 for value in input_val:64 if input_unit == 'gram_per_cm^3':65 t1 = density[output_unit]66 cal = t1 * value67 output_value.append(cal)68 else:69 #Converting to reference units70 t1 = (1 / density[input_unit]) * value71 t2 = t1 * density[output_unit]72 output_value.append(t2)73 74 75 if type(input_value) == float:76 if input_unit == 'gram_per_cm^3':77 t1 = density[output_unit]78 cal = t1 * input_value79 output_value.append(cal)80 else:81 t1 = (1/ density[input_unit]) * input_value82 t2 = t1 * density[output_unit]83 output_value.append(t2)84 85 # Unit conversion for dynamic viscosity 86 #if prop.lower() == 'dynamic_viscosity':87 88 # #output_value = []89 90 # if type(input_value) == list:91 # input_val = list(input_value)92 # for value in input_val:93 # if input_unit == 'kg_per_meter_second':94 # t1 = dynamic_viscosity[output_unit]95 # cal = t1 * value96 # output_value.append(cal)97 # else:98 # t1 = (1 / dyanmic_viscosity[input_unit]) * value99 # t2 = t1 * dynamic_viscosity[output_unit]100 # output_value.append(t2)101 102 103 # if type(input_value) == float:104 # if input_unit == 'kg_per_meter_second':105 # t1 = dynamic_viscosity[output_unit]106 # cal = t1 * input_value107 # output_value.append(cal)108 # else:109 # t1 = (1/dynamic_viscosity[input_unit]) * input_value110 # t2 = t1 * dynamic_viscosity[output_unit]111 # output_value.append(t2) 112 113 # Unit conversion for kinematic viscosity 114 #if prop == 'kinematic_viscosity':115 116 # #output_value = []117 118 # if type(input_value) == list:119 # input_val = list(input_value)120 # for value in input_val:121 # if input_unit == 'Stoke':122 # t1 = kinematic_viscosity[output_unit]123 # cal = t1 * value124 # output_value.append(cal)125 # else:126 # t1 = (1 /kinematic_viscosity[input_unit])* value127 # t2 = t1 * kinematic_viscosity[output_unit]128 # output_value.append(t2)129 130 131 # if type(input_value) == float:132 # if input_unit == 'Stoke':133 # t1 = Kinematic_viscosity[output_unit]134 # cal = t1 * input_value135 # output_value.append(cal)136 # else:137 # t1 = (1/kinematic_viscosity[input_unit]) * input_value138 # t2 = t1 * kinematic_viscosity[output_unit]139 # output_value.append(t2)140 141 # Unit conversion for Molecular Weight 142 #if prop == 'Molecular Weight':143 144 # #output_value = []145 146 # if type(input_value) == list:147 # input_val = list(input_value)148 # for value in input_val:149 # if input_unit == 'gram_per_mol':150 # t1 = mw[output_unit]151 # cal = t1 * value152 # output_value.append(cal)153 # else:154 # t1 = (1 / mw[input_unit])* value155 # t2 = t1 * mw[output_unit]156 # output_value.append(t2)157 158 159 # if type(input_value) == float:160 # if input_unit == 'gram_per_mol':161 # t1 = mw[output_unit]162 # cal = t1 * input_value163 # output_value.append(cal)164 # else:165 # t1 = (1/ mw[input_unit])*input_value166 # t2 = t1 * mw[output_unit]167 # output_value.append(t2) 168 169 # Unit conversion for Van Der Waals Radius 170 #if prop == 'Van Der Waals Radius':171 172 # #output_value = []173 174 # if type(input_value) == list:175 # input_val = list(input_value)176 # for value in input_val:177 # if input_unit == 'pm':178 # t1 = vdwr[output_unit]179 # cal = t1 * value180 # output_value.append(cal)181 # else:182 # t1 = (1 /vdwr[input_unit])* value183 # t2 = t1 * vdwr[output_unit]184 # output_value.append(t2)185 186 187 # if type(input_value) == float:188 # if input_unit == 'pm':189 # t1 = vdwr[output_unit]190 # cal = t1 * input_value191 # output_value.append(cal)192 # else:193 # t1 = (1/vdwr[input_unit])* input_value194 # t2 = t1 * vdwr[output_unit]195 # output_value.append(t2)196 197 # Unit conversion for Ionic Radius 198 #if prop == 'Ionic Radius':199 200 # #output_value = []201 202 # if type(input_value) == list:203 # input_val = list(input_value)204 # for value in input_val:205 # if input_unit == 'pm':206 # t1 = ir[output_unit]207 # cal = t1 * value208 # output_value.append(cal)209 # else:210 # t1 = (1/ir[input_unit])*value211 # t2 = t1 * ir[output_unit]212 # output_value.append(t2)213 214 215 # if type(input_value) == float:216 # if input_unit == 'pm':217 # t1 = ir[output_unit]218 # cal = t1 * input_value219 # output_value.append(cal)220 # else:221 # t1 = (1/ir[input_unit])* input_value222 # t2 = t1 * ir[output_unit]223 # output_value.append(t2)224 225 # Unit conversion for Energy 226 if prop.lower() == 'energy':227 228 #output_value = []229 230 if type(input_value) == list:231 input_val = list(input_value)232 for value in input_val:233 if input_unit == 'Joules':234 t1 = en[output_unit]235 cal = t1 * value236 output_value.append(cal)237 else:238 t1 = (1 /en[input_unit]) * value239 t2 = t1 * en[output_unit]240 output_value.append(t2)241 242 243 if type(input_value) == float:244 if input_unit == 'Joules':245 t1 = en[output_unit]246 cal = t1 * input_value247 output_value.append(cal)248 else:249 t1 = (1/en[input_unit])* input_value250 t2 = t1 * en[output_unit]251 output_value.append(t2)252 253 # Unit conversion for Pressure 254 if prop == 'Pressure':255 256 #output_value = []257 258 if type(input_value) == list:259 input_val = list(input_value)260 for value in input_val:261 if input_unit == 'bar':262 t1 = pres[output_unit]263 cal = t1 * value264 output_value.append(cal)265 else:266 t1 = (1 /pres[input_unit])* value267 t2 = t1 * pres[output_unit]268 output_value.append(t2)269 270 271 if type(input_value) == float:272 if input_unit == 'bar':273 t1 = pres[output_unit]274 cal = t1 * input_value275 output_value.append(cal)276 else:277 t1 = (1/pres[input_unit]) * input_value278 t2 = t1 * pres[output_unit]279 output_value.append(t2)280 281 # Unit conversion for Atomic Mass 282 if prop == 'Atomic Mass':283 284 #output_value = []285 286 if type(input_value) == list:287 input_val = list(input_value)288 for value in input_val:289 if input_unit == 'Da':290 t1 = am[output_unit]291 cal = t1 * value292 output_value.append(cal)293 else:294 t1 = (1 /am[input_unit])* value295 t2 = t1 * am[output_unit]296 output_value.append(t2)297 298 299 if type(input_value) == float:300 if input_unit == 'Da':301 t1 = am[output_unit]302 cal = t1 * input_value303 output_value.append(cal)304 else:305 t1 = (1/am[input_unit])* input_value306 t2 = t1 * am[output_unit]307 output_value.append(t2)308 309 # Unit conversion for Polarizability Volume 310 if prop.lower() == 'polarizability':311 312 #output_value = []313 314 if type(input_value) == list:315 input_val = list(input_value)316 for value in input_val:317 if input_unit == 'Bohr^3':318 t1 = pv[output_unit]319 cal = t1 * value320 output_value.append(cal)321 else:322 t1 = (1 /pv[input_unit]) * value323 t2 = t1 * pv[output_unit]324 output_value.append(t2)325 326 327 if type(input_value) == float:328 if input_unit == 'Bohr^3':329 t1 = pv[output_unit]330 cal = t1 * input_value331 output_value.append(cal)332 else:333 t1 = (1/pv[input_unit])* input_value334 t2 = t1 * pv[output_unit]335 output_value.append(t2)336 337 # Unit conversion for Solubility Parameter 338 if prop.lower() == 'solubility parameter':339 340 #output_value = []341 342 if type(input_value) == list:343 input_val = list(input_value)344 for value in input_val:345 if input_unit == 'cal^1/2 cm^-3/2':346 t1 = sp[output_unit]347 cal = t1 * value348 output_value.append(cal)349 else:350 t1 = (1/sp[input_unit]) *value351 t2 = t1 * sp[output_unit]352 output_value.append(t2)353 354 355 if type(input_value) == float:356 if input_unit == 'cal^1/2 cm^-3/2':357 t1 = sp[output_unit]358 cal = t1 * input_value359 output_value.append(cal)360 else:361 t1 = (1/sp[input_unit]) *input_value362 t2 = t1 * sp[output_unit]363 output_value.append(t2)364 # Unit conversion for Dipole Moment 365 if prop.lower() == 'dipole moment':366 367 #output_value = []368 369 if type(input_value) == list:370 input_val = list(input_value)371 for value in input_val:372 if input_unit == 'debye':373 t1 = dm[output_unit]374 cal = t1 * value375 output_value.append(cal)376 else:377 t1 = (1 /dm[input_unit]) * value378 t2 = t1 * dm[output_unit]379 output_value.append(t2)380 381 382 if type(input_value) == float:383 if input_unit == 'debye':384 t1 = dm[output_unit]385 cal = t1 * input_value386 output_value.append(cal)387 else:388 t1 = (1/dm[input_unit])* input_value389 t2 = t1 * dm[output_unit]390 output_value.append(t2)391 # Unit conversion for Quadrupole Moment 392 if prop.lower() == 'quadrupole moment':393 394 #output_value = []395 396 if type(input_value) == list:397 input_val = list(input_value)398 for value in input_val:399 if input_unit == 'coulomb_per_m^2':400 t1 = qm[output_unit]401 cal = t1 * value402 output_value.append(cal)403 else:404 t1 = (1 /qm[input_unit]) * value405 t2 = t1 * qm[output_unit]406 output_value.append(t2)407 408 409 if type(input_value) == float:410 if input_unit == 'coulomb_per_m^2':411 t1 = qm[output_unit]412 cal = t1 * input_value413 output_value.append(cal)414 else:415 t1 = (1/qm[input_unit])* input_value416 t2 = t1 * qm[output_unit]417 output_value.append(t2)418 419 # Unit conversion for Temperature 420 if prop.lower() == 'temperature':421 #output_value = []422 423 if type(input_value) == list:424 input_val = list(input_value)425 for value in input_val:426 if input_unit == 'K':427 if output_unit == 'C':428 cal = value -273.15429 output_value.append(cal)430 if output_unit == 'F':431 cal = (value - 273.15) * 9/5 + 32432 output_value.append(cal)433 elif input_unit == 'C':434 if output_unit == 'K':435 cal = value + 273.15436 output_value.append(cal)437 if output_unit == 'F':438 cal = (value * 9/5) + 32439 output_value.append(cal)440 elif input_unit == 'F':441 if output_unit == 'C':442 cal = (value - 32) * 5/9443 output_value.append(cal)444 if output_unit == 'K':445 cal = (value - 32) * 5/9 + 273.15446 output_value.append(cal)447 448 if type(input_value) == float:449 if input_unit == 'K':450 if output_unit == 'C':451 cal = input_value -273.15452 output_value.append(cal)453 if output_unit == 'F':454 cal = (input_value - 273.15) * 9/5 + 32455 output_value.append(cal)456 elif input_unit == 'C':457 if output_unit == 'K':458 cal = inpput_value + 273.15459 output_value.append(cal)460 if output_unit == 'F':461 cal = (input_value * 9/5) + 32462 output_value.append(cal)463 elif input_unit == 'F':464 if output_unit == 'C':465 cal = (input_value - 32) * 5/9466 output_value.append(cal)467 if output_unit == 'K':468 cal = (input_value - 32) * 5/9 + 273.15469 output_value.append(cal)470 ...
mrs_manual_edit.py
Source:mrs_manual_edit.py
1##This script contains functions which need to be manually edited for the solver to run 2##This function takes in manual inputs from the used to build the parameters for the MILP solver 3def mrs_manual_edit_milp_param (cooling_load_data, weather_condition, ga_inputs, piecewise_linear_steps):4 5 ##cooling_load_data --- the associated cooling load data 6 ##weather_condition --- the associated weather condition7 ##ga_inputs --- inputs from the genetic algorithm8 ##piecewise_linear_steps --- the number of pieces used to linearize the models 9 import pandas as pd 10 11 ##Manually some input parameters 12 cond_temp = weather_condition['T_WB'][0] + 5 + 273.15 ##Just an assumption for the condenser temperature 13 14 ##Initiate a dataframe to hold values 15 milp_param = pd.DataFrame(columns = ['Name', 'Value', 'Unit'])16 17 ##############################################################################################################18 ##chiller_evap_flow_consol 19 input_value = {}20 input_value['Name'] = 'chiller_evap_flow_consol_tenwkflow' ##Name of the parameter format = <model name>_<parameter name>21 input_value['Value'] = ga_inputs['evap_flow'][0] ##Value of the parameter22 input_value['Unit'] = 'm3/h' ##Units of the parameter23 24 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]25 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])26 milp_param = milp_param.append(temp_df, ignore_index=True) 27 28 ############################################################################################################## 29 ##chiller_ret30 input_value = {}31 input_value['Name'] = 'chiller_ret_etret' 32 input_value['Value'] = ga_inputs['tin_evap'][0]33 input_value['Unit'] = 'K'34 35 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]36 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])37 milp_param = milp_param.append(temp_df, ignore_index=True) 38 39 ##############################################################################################################40 ##chiller1_evap 41 input_value = {}42 input_value['Name'] = 'chiller1_evap_etret' 43 input_value['Value'] = ga_inputs['tin_evap'][0]44 input_value['Unit'] = 'K'45 46 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]47 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])48 milp_param = milp_param.append(temp_df, ignore_index=True) 49 50 input_value = {}51 input_value['Name'] = 'chiller1_evap_ctin' 52 input_value['Value'] = cond_temp53 input_value['Unit'] = 'K'54 55 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]56 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])57 milp_param = milp_param.append(temp_df, ignore_index=True) 58 59 input_value = {}60 input_value['Name'] = 'chiller1_evap_tenwkflow' 61 input_value['Value'] = ga_inputs['evap_flow'][0]62 input_value['Unit'] = 'm3/h'63 64 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]65 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])66 milp_param = milp_param.append(temp_df, ignore_index=True) 67 68 input_value = {}69 input_value['Name'] = 'chiller1_evap_piecewise_steps' 70 input_value['Value'] = piecewise_linear_steps71 input_value['Unit'] = '-'72 73 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]74 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])75 milp_param = milp_param.append(temp_df, ignore_index=True) 76 77 ############################################################################################################## 78 ##chiller1_evap_nwk79 input_value = {}80 input_value['Name'] = 'chiller1_evap_nwk_piecewise_steps' 81 input_value['Value'] = piecewise_linear_steps82 input_value['Unit'] = '-'83 84 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]85 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])86 milp_param = milp_param.append(temp_df, ignore_index=True) 87 input_value = {}88 input_value['Name'] = 'chiller1_evap_nwk_tenwkflow' 89 input_value['Value'] = ga_inputs['evap_flow'][0]90 input_value['Unit'] = 'm3/h'91 92 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]93 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])94 milp_param = milp_param.append(temp_df, ignore_index=True)95 ##############################################################################################################96 ##chiller1_evap_pump 97 input_value = {}98 input_value['Name'] = 'chiller1_evap_pump_piecewise_steps' 99 input_value['Value'] = piecewise_linear_steps100 input_value['Unit'] = '-'101 102 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]103 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])104 milp_param = milp_param.append(temp_df, ignore_index=True) 105 ############################################################################################################## 106 ##chiller2_evap107 input_value = {}108 input_value['Name'] = 'chiller2_evap_etret' 109 input_value['Value'] = ga_inputs['tin_evap'][0]110 input_value['Unit'] = 'K'111 112 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]113 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])114 milp_param = milp_param.append(temp_df, ignore_index=True) 115 input_value = {}116 input_value['Name'] = 'chiller2_evap_ctin' 117 input_value['Value'] = cond_temp118 input_value['Unit'] = 'K'119 120 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]121 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])122 milp_param = milp_param.append(temp_df, ignore_index=True) 123 124 input_value = {}125 input_value['Name'] = 'chiller2_evap_tenwkflow' 126 input_value['Value'] = ga_inputs['evap_flow'][0]127 input_value['Unit'] = 'm3/h'128 129 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]130 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])131 milp_param = milp_param.append(temp_df, ignore_index=True) 132 133 input_value = {}134 input_value['Name'] = 'chiller2_evap_piecewise_steps' 135 input_value['Value'] = piecewise_linear_steps136 input_value['Unit'] = '-'137 138 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]139 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])140 milp_param = milp_param.append(temp_df, ignore_index=True) 141 ############################################################################################################## 142 ##chiller2_evap_nwk143 input_value = {}144 input_value['Name'] = 'chiller2_evap_nwk_piecewise_steps' 145 input_value['Value'] = piecewise_linear_steps146 input_value['Unit'] = '-'147 148 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]149 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])150 milp_param = milp_param.append(temp_df, ignore_index=True) 151 input_value = {}152 input_value['Name'] = 'chiller2_evap_nwk_tenwkflow' 153 input_value['Value'] = ga_inputs['evap_flow'][0]154 input_value['Unit'] = 'm3/h'155 156 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]157 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])158 milp_param = milp_param.append(temp_df, ignore_index=True) 159 160 ##############################################################################################################161 ##chiller2_evap_pump 162 input_value = {}163 input_value['Name'] = 'chiller2_evap_pump_piecewise_steps' 164 input_value['Value'] = piecewise_linear_steps165 input_value['Unit'] = '-'166 167 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]168 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])169 milp_param = milp_param.append(temp_df, ignore_index=True) 170 171 ##############################################################################################################172 ##cp_nwk 173 input_value = {}174 input_value['Name'] = 'cp_nwk_tenwkflow' 175 input_value['Value'] = ga_inputs['evap_flow'][0]176 input_value['Unit'] = 'm3/h'177 178 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]179 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])180 milp_param = milp_param.append(temp_df, ignore_index=True) 181 182 ##############################################################################################################183 ##dist_nwk_pump 184 input_value = {}185 input_value['Name'] = 'dist_nwk_pump_choice' ##There are 2 pumps to choose from pump 0 and pump 1186 input_value['Value'] = 0187 input_value['Unit'] = '-'188 189 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]190 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])191 milp_param = milp_param.append(temp_df, ignore_index=True) 192 193 input_value = {}194 input_value['Name'] = 'dist_nwk_pump_piecewise_steps' 195 input_value['Value'] = piecewise_linear_steps196 input_value['Unit'] = '-'197 198 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]199 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])200 milp_param = milp_param.append(temp_df, ignore_index=True) 201 202 ##############################################################################################################203 ##gv2_nwk 204 input_value = {}205 input_value['Name'] = 'gv2_nwk_piecewise_steps' 206 input_value['Value'] = piecewise_linear_steps207 input_value['Unit'] = '-'208 209 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]210 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])211 milp_param = milp_param.append(temp_df, ignore_index=True) 212 213 input_value = {}214 input_value['Name'] = 'gv2_nwk_tenwkflow' 215 input_value['Value'] = ga_inputs['evap_flow'][0]216 input_value['Unit'] = 'm3/h'217 218 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]219 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])220 milp_param = milp_param.append(temp_df, ignore_index=True) 221 ##############################################################################################################222 ##gv2_substation223 input_value = {}224 input_value['Name'] = 'gv2_substation_demand' 225 input_value['Value'] = cooling_load_data['gv2_ss'][0]226 input_value['Unit'] = 'kWh'227 228 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]229 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])230 milp_param = milp_param.append(temp_df, ignore_index=True) 231 input_value = {}232 input_value['Name'] = 'gv2_substation_tenwkflow' 233 input_value['Value'] = ga_inputs['evap_flow'][0]234 input_value['Unit'] = 'm3/h'235 236 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]237 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])238 milp_param = milp_param.append(temp_df, ignore_index=True) 239 240 ##############################################################################################################241 ##hsb_nwk 242 input_value = {}243 input_value['Name'] = 'hsb_nwk_piecewise_steps' 244 input_value['Value'] = piecewise_linear_steps245 input_value['Unit'] = '-'246 247 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]248 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])249 milp_param = milp_param.append(temp_df, ignore_index=True) 250 251 input_value = {}252 input_value['Name'] = 'hsb_nwk_tenwkflow' 253 input_value['Value'] = ga_inputs['evap_flow'][0]254 input_value['Unit'] = 'm3/h'255 256 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]257 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])258 milp_param = milp_param.append(temp_df, ignore_index=True) 259 260 ##############################################################################################################261 ##hsb_substation 262 input_value = {}263 input_value['Name'] = 'hsb_substation_demand' 264 input_value['Value'] = cooling_load_data['hsb_ss'][0]265 input_value['Unit'] = 'kWh'266 267 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]268 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])269 milp_param = milp_param.append(temp_df, ignore_index=True) 270 input_value = {}271 input_value['Name'] = 'hsb_substation_tenwkflow' 272 input_value['Value'] = ga_inputs['evap_flow'][0]273 input_value['Unit'] = 'm3/h'274 275 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]276 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])277 milp_param = milp_param.append(temp_df, ignore_index=True) 278 ##############################################################################################################279 ##ice_nwk 280 input_value = {}281 input_value['Name'] = 'ice_nwk_piecewise_steps' 282 input_value['Value'] = piecewise_linear_steps283 input_value['Unit'] = '-'284 285 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]286 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])287 milp_param = milp_param.append(temp_df, ignore_index=True) 288 289 input_value = {}290 input_value['Name'] = 'ice_nwk_tenwkflow' 291 input_value['Value'] = ga_inputs['evap_flow'][0]292 input_value['Unit'] = 'm3/h'293 294 temp_values = [input_value['Name'], input_value['Value'], input_value['Unit']]295 temp_df = pd.DataFrame(data = [temp_values], columns = ['Name', 'Value', 'Unit'])296 milp_param = milp_param.append(temp_df, ignore_index=True) ...
omm_readinputs.py
Source:omm_readinputs.py
1"""2Generated by CHARMM-GUI (http://www.charmm-gui.org)3omm_readinputs.py4This module is for reading inputs in OpenMM.5Correspondance: jul316@lehigh.edu or wonpil@lehigh.edu6Last update: March 29, 20177"""8from simtk.unit import *9from simtk.openmm import *10from simtk.openmm.app import *11class _OpenMMReadInputs():12 def __init__(self):13 self.mini_nstep = 0 # Number of steps for minimization14 self.mini_Tol = 1.0 # Minimization energy tolerance15 self.gen_vel = 'no' # Generate initial velocities16 self.gen_temp = 300.0 # Temperature for generating initial velocities (K)17 self.gen_seed = None # Seed for generating initial velocities18 self.nstep = 0 # Number of steps to run19 self.dt = 0.001 # Time-step (ps)20 self.nstout = 100 # Writing output frequency (steps)21 self.nstdcd = 0 # Wrtiing coordinates trajectory frequency (steps)22 self.coulomb = PME # Electrostatic cut-off method23 self.ewald_Tol = 0.0005 # Ewald error tolerance24 self.vdw = 'Switch' # vdW cut-off method25 self.r_on = 1.0 # Switch-on distance (nm)26 self.r_off = 1.2 # Switch-off distance (nm)27 self.temp = 300.0 # Temperature (K)28 self.fric_coeff = 5 # Friction coefficient for Langevin dynamics29 self.drude_temp = 1.0 # Drude Temperature (K)30 self.drude_fric_coeff = 20 # Drude Friction coefficient for Langevin dynamics31 self.drude_hardwall = 0.025 # Drude Hardwall32 self.pcouple = 'no' # Turn on/off pressure coupling33 self.p_ref = 1.0 # Pressure (Pref or Pxx, Pyy, Pzz; bar)34 self.p_type = 'membrane' # MonteCarloBarotat type35 self.p_scale = True, True, True # For MonteCarloAnisotropicBarostat36 self.p_XYMode = MonteCarloMembraneBarostat.XYIsotropic # For MonteCarloMembraneBarostat37 self.p_ZMode = MonteCarloMembraneBarostat.ZFree # For MonteCarloMembraneBarostat38 self.p_tens = 0.0 # Sulface tension for MonteCarloMembraneBarostat (dyne/cm)39 self.p_freq = 15 # Pressure coupling frequency (steps)40 self.cons = HBonds # Constraints method41 self.rest = 'no' # Turn on/off restraints42 self.fc_pos = 0.0 # Positional restraint force constant43 def read(self, inputFile):44 for line in open(inputFile, 'r'):45 if line.find('#') >= 0: line = line.split('#')[0]46 line = line.strip()47 if len(line) > 0:48 segments = line.split('=')49 input_param = segments[0].upper().strip()50 try: input_value = segments[1].strip()51 except: input_value = None52 if input_value:53 if input_param == 'MINI_NSTEP': self.mini_nstep = int(input_value)54 if input_param == 'MINI_TOL': self.mini_Tol = float(input_value)55 if input_param == 'GEN_VEL':56 if input_value.upper() == 'YES': self.gen_vel = 'yes'57 if input_value.upper() == 'NO': self.gen_vel = 'no'58 if input_param == 'GEN_TEMP': self.gen_temp = float(input_value)59 if input_param == 'GEN_SEED': self.gen_seed = int(input_value)60 if input_param == 'NSTEP': self.nstep = int(input_value)61 if input_param == 'DT': self.dt = float(input_value)62 if input_param == 'NSTOUT': self.nstout = int(input_value)63 if input_param == 'NSTDCD': self.nstdcd = int(input_value)64 if input_param == 'COULOMB':65 if input_value.upper() == 'NOCUTOFF': self.coulomb = NoCutoff66 if input_value.upper() == 'CUTOFFNONPERIODIC': self.coulomb = CutoffNonPeriodic67 if input_value.upper() == 'CUTOFFPERIODIC': self.coulomb = CutoffPeriodic68 if input_value.upper() == 'EWALD': self.coulomb = Ewald69 if input_value.upper() == 'PME': self.coulomb = PME70 if input_param == 'EWALD_TOL': self.ewald_Tol = float(input_value)71 if input_param == 'VDW':72 if input_value.upper() == 'FORCE-SWITCH': self.vdw = 'Force-switch'73 if input_value.upper() == 'SWITCH': self.vdw = 'Switch'74 if input_value.upper() == 'LJPME': self.vdw = 'LJPME'75 if input_param == 'R_ON': self.r_on = float(input_value)76 if input_param == 'R_OFF': self.r_off = float(input_value)77 if input_param == 'TEMP': self.temp = float(input_value)78 if input_param == 'FRIC_COEFF': self.fric_coeff = float(input_value)79 if input_param == 'DRUDE_TEMP': self.drude_temp = float(input_value)80 if input_param == 'DRUDE_FRIC_COEFF': self.drude_fric_coeff = float(input_value)81 if input_param == 'DRUDE_HARDWALL': self.drude_hardwall = float(input_value)82 if input_param == 'PCOUPLE':83 if input_value.upper() == 'YES': self.pcouple = 'yes'84 if input_value.upper() == 'NO': self.pcouple = 'no'85 if input_param == 'P_REF':86 if input_value.find(',') < 0:87 self.p_ref = float(input_value)88 else:89 Pxx = float(input_value.split(',')[0])90 Pyy = float(input_value.split(',')[1])91 Pzz = float(input_value.split(',')[2])92 self.p_ref = Pxx, Pyy, Pzz93 if input_param == 'P_TYPE':94 if input_value.upper() == 'ISOTROPIC': self.p_type = 'isotropic'95 if input_value.upper() == 'MEMBRANE': self.p_type = 'membrane'96 if input_value.upper() == 'ANISOTROPIC': self.p_type = 'anisotropic'97 if input_param == 'P_SCALE':98 scaleX = True99 scaleY = True100 scaleZ = True101 if input_value.upper().find('X') < 0: scaleX = False102 if input_value.upper().find('Y') < 0: scaleY = False103 if input_value.upper().find('Z') < 0: scaleZ = False104 self.p_scale = scaleX, scaleY, scaleZ105 if input_param == 'P_XYMODE':106 if input_value.upper() == 'XYISOTROPIC': self.p_XYMode = MonteCarloMembraneBarostat.XYIsotropic107 if input_value.upper() == 'XYANISOTROPIC': self.p_XYMode = MonteCarloMembraneBarostat.XYAnisotropic108 if input_param == 'P_ZMODE':109 if input_value.upper() == 'ZFREE': self.p_ZMode = MonteCarloMembraneBarostat.ZFree110 if input_value.upper() == 'ZFIXED': self.p_ZMode = MonteCarloMembraneBarostat.ZFixed111 if input_value.upper() == 'CONSTANTVOLUME': self.p_ZMode = MonteCarloMembraneBarostat.ConstantVolume112 if input_param == 'P_TENS': self.p_tens = float(input_value)113 if input_param == 'P_FREQ': self.p_freq = int(input_value)114 if input_param == 'CONS':115 if input_value.upper() == 'NONE': self.cons = None116 if input_value.upper() == 'HBONDS': self.cons = HBonds117 if input_value.upper() == 'ALLBONDS': self.cons = AllBonds118 if input_value.upper() == 'HANGLES': self.cons = HAngles119 if input_param == 'REST':120 if input_value.upper() == 'YES': self.rest = 'yes'121 if input_value.upper() == 'NO': self.rest = 'no'122 if input_param == 'FC_POS': self.fc_pos = float(input_value)123 return self124def read_inputs(inputFile):...
LambdaTest’s Playwright tutorial will give you a broader idea about the Playwright automation framework, its unique features, and use cases with examples to exceed your understanding of Playwright testing. This tutorial will give A to Z guidance, from installing the Playwright framework to some best practices and advanced concepts.
Get 100 minutes of automation test minutes FREE!!