Best Python code snippet using pandera_python
test_typing.py
Source: test_typing.py
...122class SchemaFieldCategoricalDtype(pa.SchemaModel):123 col: Series[pd.CategoricalDtype] = pa.Field(124 dtype_kwargs={"categories": ["b", "a"], "ordered": True}125 )126def _test_annotated_dtype(127 model: Type[pa.SchemaModel],128 dtype: Type,129 dtype_kwargs: Optional[Dict[str, Any]] = None,130):131 dtype_kwargs = dtype_kwargs or {}132 schema = model.to_schema()133 actual = schema.columns["col"].dtype134 expected = pa.Column(dtype(**dtype_kwargs), name="col").dtype135 assert actual == expected136def _test_default_annotated_dtype(137 model: Type[pa.SchemaModel], dtype: Type, has_mandatory_args: bool138):139 if has_mandatory_args:140 err_msg = "cannot be instantiated"141 with pytest.raises(TypeError, match=err_msg):142 model.to_schema()143 else:144 _test_annotated_dtype(model, dtype)145class SchemaFieldDatetimeTZDtype(pa.SchemaModel):146 col: Series[pd.DatetimeTZDtype] = pa.Field(147 dtype_kwargs={"unit": "ns", "tz": "EST"}148 )149class SchemaFieldIntervalDtype(pa.SchemaModel):150 col: Series[pd.IntervalDtype] = pa.Field(dtype_kwargs={"subtype": "int32"})151class SchemaFieldPeriodDtype(pa.SchemaModel):152 col: Series[pd.PeriodDtype] = pa.Field(dtype_kwargs={"freq": "D"})153class SchemaFieldSparseDtype(pa.SchemaModel):154 col: Series[pd.SparseDtype] = pa.Field(155 dtype_kwargs={"dtype": np.int32, "fill_value": 0}156 )157@pytest.mark.parametrize(158 "model, dtype, dtype_kwargs",159 [160 (161 SchemaFieldCategoricalDtype,162 pd.CategoricalDtype,163 {"categories": ["b", "a"], "ordered": True},164 ),165 (166 SchemaFieldDatetimeTZDtype,167 pd.DatetimeTZDtype,168 {"unit": "ns", "tz": "EST"},169 ),170 (SchemaFieldIntervalDtype, pd.IntervalDtype, {"subtype": "int32"}),171 (SchemaFieldPeriodDtype, pd.PeriodDtype, {"freq": "D"}),172 (173 SchemaFieldSparseDtype,174 pd.SparseDtype,175 {"dtype": np.int32, "fill_value": 0},176 ),177 ],178)179def test_parametrized_pandas_extension_dtype_field(180 model: Type[pa.SchemaModel], dtype: Type, dtype_kwargs: Dict[str, Any]181):182 """Test type annotations for parametrized pandas extension dtypes."""183 _test_annotated_dtype(model, dtype, dtype_kwargs)184class SchemaDefaultCategoricalDtype(pa.SchemaModel):185 col: Series[pd.CategoricalDtype]186class SchemaDefaultDatetimeTZDtype(pa.SchemaModel):187 col: Series[pd.DatetimeTZDtype]188class SchemaDefaultIntervalDtype(pa.SchemaModel):189 col: Series[pd.IntervalDtype]190class SchemaDefaultPeriodDtype(pa.SchemaModel):191 col: Series[pd.PeriodDtype]192class SchemaDefaultSparseDtype(pa.SchemaModel):193 col: Series[pd.SparseDtype]194@pytest.mark.parametrize(195 "model, dtype, has_mandatory_args",196 [197 (SchemaDefaultCategoricalDtype, pd.CategoricalDtype, False),198 # DatetimeTZDtype: tz is implictly required199 (SchemaDefaultDatetimeTZDtype, pd.DatetimeTZDtype, True),200 (SchemaDefaultIntervalDtype, pd.IntervalDtype, False),201 # PeriodDtype: freq is implicitely required -> str(pd.PeriodDtype())202 # raises AttributeError203 (SchemaDefaultPeriodDtype, pd.PeriodDtype, True),204 (SchemaDefaultSparseDtype, pd.SparseDtype, False),205 ],206)207def test_legacy_default_pandas_extension_dtype(208 model, dtype: pd.core.dtypes.base.ExtensionDtype, has_mandatory_args: bool209):210 """Test type annotations for default pandas extension dtypes."""211 _test_default_annotated_dtype(model, dtype, has_mandatory_args)212class SchemaAnnotatedCategoricalDtype(pa.SchemaModel):213 col: Series[Annotated[pd.CategoricalDtype, ["b", "a"], True]]214class SchemaAnnotatedDatetimeTZDtype(pa.SchemaModel):215 col: Series[Annotated[pd.DatetimeTZDtype, "ns", "est"]]216if pa.PANDAS_1_3_0_PLUS:217 class SchemaAnnotatedIntervalDtype(pa.SchemaModel):218 col: Series[Annotated[pd.IntervalDtype, "int32", "both"]]219else:220 class SchemaAnnotatedIntervalDtype(pa.SchemaModel): # type: ignore221 col: Series[Annotated[pd.IntervalDtype, "int32"]]222 class SchemaAnnotatedPeriodDtype(pa.SchemaModel):223 col: Series[Annotated[pd.PeriodDtype, "D"]]224 class SchemaAnnotatedSparseDtype(pa.SchemaModel):225 col: Series[Annotated[pd.SparseDtype, np.int32, 0]]226 @pytest.mark.parametrize(227 "model, dtype, dtype_kwargs",228 [229 (230 SchemaAnnotatedCategoricalDtype,231 pd.CategoricalDtype,232 {"categories": ["b", "a"], "ordered": True},233 ),234 (235 SchemaAnnotatedDatetimeTZDtype,236 pd.DatetimeTZDtype,237 {"unit": "ns", "tz": "EST"},238 ),239 (240 SchemaAnnotatedIntervalDtype,241 pd.IntervalDtype,242 (243 {"subtype": "int32", "closed": "both"}244 if pa.PANDAS_1_3_0_PLUS245 else {"subtype": "int32"}246 ),247 ),248 (SchemaAnnotatedPeriodDtype, pd.PeriodDtype, {"freq": "D"}),249 (250 SchemaAnnotatedSparseDtype,251 pd.SparseDtype,252 {"dtype": np.int32, "fill_value": 0},253 ),254 ],255 )256 def test_annotated_dtype(257 model: Type[pa.SchemaModel], dtype: Type, dtype_kwargs: Dict[str, Any]258 ):259 """Test type annotations for parametrized pandas extension dtypes."""260 _test_annotated_dtype(model, dtype, dtype_kwargs)261 class SchemaInvalidAnnotatedDtype(pa.SchemaModel):262 col: Series[Annotated[pd.DatetimeTZDtype, "utc"]]263 def test_invalid_annotated_dtype():264 """265 Test incorrect number of parameters for parametrized pandas extension266 dtypes.267 """268 err_msg = re.escape(269 "Annotation 'DatetimeTZDtype' requires all "270 r"positional arguments ['unit', 'tz']."271 )272 with pytest.raises(TypeError, match=err_msg):273 SchemaInvalidAnnotatedDtype.to_schema()274 class SchemaRedundantField(pa.SchemaModel):...
Check out the latest blogs from LambdaTest on this topic:
I routinely come across test strategy documents when working with customers. They are lengthy—100 pages or more—and packed with monotonous text that is routinely reused from one project to another. Yawn once more— the test halt and resume circumstances, the defect management procedure, entrance and exit criteria, unnecessary generic risks, and in fact, one often-used model replicates the requirements of textbook testing, from stress to systems integration.
When I started writing tests with Cypress, I was always going to use the user interface to interact and change the application’s state when running tests.
Pair testing can help you complete your testing tasks faster and with higher quality. But who can do pair testing, and when should it be done? And what form of pair testing is best for your circumstance? Check out this blog for more information on how to conduct pair testing to optimize its benefits.
People love to watch, read and interact with quality content — especially video content. Whether it is sports, news, TV shows, or videos captured on smartphones, people crave digital content. The emergence of OTT platforms has already shaped the way people consume content. Viewers can now enjoy their favorite shows whenever they want rather than at pre-set times. Thus, the OTT platform’s concept of viewing anything, anytime, anywhere has hit the right chord.
Have you ever visited a website that only has plain text and images? Most probably, no. It’s because such websites do not exist now. But there was a time when websites only had plain text and images with almost no styling. For the longest time, websites did not focus on user experience. For instance, this is how eBay’s homepage looked in 1999.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!