Best Python code snippet using pandera_python
parser.py
Source: parser.py
...11 file = pd.read_excel(file_path)12 error_schema = DataFrameSchema({13 "nom_amenageur": Column(str, Check.is_uppercase(), nullable=True),14 "siren_amenageur": Column(int, Check.in_range(100000000, 999999999)),15 "contact_amenageur": Column(str, Check.str_matches(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b')),16 "nom_operateur": Column(str, nullable=True),17 "contact_operateur": Column(str, Check.str_matches(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b')),18 "telephone_operateur": Column(str, nullable=True),19 "nom_enseigne": Column(str),20 "id_station_itinerance": Column(str, Check.str_matches(r'(?:(?:^|,)(^FR[A-Z0-9]{4,33}$|Non concerné))+$')),21 "id_station_local": Column(str, nullable=True),22 "nom_station": Column(str),23 "implantation_station": Column(str, Check.str_matches(24 r'(Voirie|Parking public|Parking privé à usage public|Parking privé réservé à la clientèle|Station dédiée à la recharge rapide){1}')),25 "adresse_station": Column(str),26 # "code_insee_commune": Column(str, Check.str_matches(r'^([013-9]\d|2[AB1-9])\d{3}$')),27 # Regex officiel code INSEE ne marche pas28 # coordonneesXY29 # Difficile à valider. consolidated_longitude et latitude sont elles validées.30 "nbre_pdc": Column(int, Check.greater_than(0)),31 "id_pdc_itinerance": Column(str, Check.str_matches(r'(?:(?:^|,)(^FR[A-Z0-9]{4,33}$|Non concerné))+$')),32 "id_pdc_local": Column(str, nullable=True),33 "puissance_nominale": Column(float, Check.greater_than_or_equal_to(0)),34 "prise_type_ef": Column(int, Check.in_range(0, 1)),35 "prise_type_2": Column(int, Check.in_range(0, 1)),36 "prise_type_combo_ccs": Column(int, Check.in_range(0, 1)),37 "prise_type_chademo": Column(int, Check.in_range(0, 1)),38 "prise_type_autre": Column(int, Check.in_range(0, 1)),39 "gratuit": Column(int, Check.in_range(0, 1)),40 "paiement_acte": Column(int, Check.in_range(0, 1)),41 "paiement_cb": Column(int, Check.in_range(0, 1)),42 "tarification": Column(str, nullable=True),43 "condition_acces": Column(str, Check.str_matches(r'(Accès libre|Accès réservé){1}')),44 "reservation": Column(int, Check.in_range(0, 1)),45 # "horaires": Column(str, Check.str_matches(r'(.*?)((\d{1,2}:\d{2})-(\d{1,2}:\d{2})|24/7)')),46 # Regex officielle ne marche pas47 "accessibilite_pmr": Column(str, Check.str_matches(48 r'(Réservé PMR|Accessible mais non réservé PMR|Non accessible|Accessibilité inconnue){1}')),49 "restriction_gabarit": Column(str),50 "station_deux_roues": Column(int, Check.in_range(0, 1)),51 "raccordement": Column(str, Check.str_matches(r'(Direct|Indirect){1}')),52 "num_pdl": Column(str, nullable=True),53 # date_mise_en_service54 # Dates, compliqué à valider55 "observations": Column(str, nullable=True),56 # date_maj57 # last_modified58 "datagouv_dataset_id": Column(str),59 "datagouv_resource_id": Column(str),60 "datagouv_organization_or_owner": Column(str),61 "consolidated_longitude": Column(float, Check.in_range(-180, 180)),62 "consolidated_latitude": Column(float, Check.in_range(-180, 180)),63 "consolidated_code_postal": Column(int, Check.in_range(1000, 99999)),64 "consolidated_commune": Column(str),65 "consolidated_is_lon_lat_correct": Column(int, Check.in_range(0, 1)),66 "consolidated_is_code_insee_verified": Column(int, Check.in_range(0, 1)),67 })68 warning_schema = DataFrameSchema({69 "contact_amenageur": Column(str, Check.str_matches(r'\b[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,}\b')),70 "contact_operateur": Column(str, Check.str_matches(r'\b[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,}\b')),71 "nom_amenageur": Column(str, Check.is_uppercase(), nullable=True),72 })73 error_percent = 074 warning_percent = 075 warning_df = pd.DataFrame()76 error_df = pd.DataFrame()77 try:78 error_schema.validate(file, lazy=True)79 except errors.SchemaErrors as err:80 pd.set_option("display.max_columns", None, "display.max_rows", None)81 error_df = err.failure_cases82 error_percent = len(err.failure_cases)/len(file)*10083 try:84 warning_schema.validate(file, lazy=True)...
preprocessing.py
Source: preprocessing.py
1import re2class PreProcessing():3 def __init__(self, raw_dict):4 self.raw_comp = raw_dict["Components"]5 self.raw_rules = raw_dict["Rules"]6 self.components = self.get_dict_components()7 self.rules = self.get_rules()8 def get_dict_components(self) -> dict:9 components = dict()10 matches_for_comp = self.get_matches_components()11 for key in matches_for_comp.keys():12 components[key] = matches_for_comp[key][0]13 if key == "States":14 components["Initial State"] = matches_for_comp[key][1]15 components["Final States"] = matches_for_comp[key][2]16 for key, value in components.items():17 components[key] = self.format_str(value)18 components["Initial State"] = components["Initial State"][0]19 return components20 def get_matches_components(self) -> dict:21 symb_pattern = re.compile(r"{([a-z],\s*)*[a-z]}")22 state_pattern = re.compile(r"(q(\d+|f),\s*)*q(\d+|f)")23 stack_symb_pattern = re.compile(r"{([A-Z],\s*)*[A-Z]}")24 patterns = {"Symbols": symb_pattern, "States": state_pattern, "Stack Symbols": stack_symb_pattern}25 matches_comps = dict()26 for key, value in patterns.items():27 matches_comps[key] = self.find(value)28 return matches_comps29 def find(self, pattern) -> list:30 str_matches = []31 matches = re.finditer(pattern, self.raw_comp)32 for match in matches:33 str_matches.append(match.group())34 return str_matches35 def format_str(self, string) -> list:36 string = string.replace("{", "")37 string = string.replace("}", "")38 lista = string.split(",")39 for i in range(len(lista)):40 lista[i] = lista[i].strip()41 return lista42 def get_rules(self) -> list:43 rules = []44 keys = ["origin_state", "word_read_symbol", "stack_read_symbol",45 "final_state", "stack_written_symbol"]46 for item in self.raw_rules:47 dict_rules = dict()48 for i in range(5):49 dict_rules[keys[i]] = self.format_str(item)[i]50 rules.append(dict_rules)51 """52 rules = []53 for item in self.raw_rules:54 rules.append(self.format_str(item))55 """...
dna.py
Source: dna.py
1import sys2import csv3def main():4 argc = len(sys.argv)5 # Check for incorrect usage6 if argc != 3:7 print("Usage: ./dna.py <db_file> <sequence_file>")8 sys.exit(1)9 else:10 db_file = sys.argv[1]11 sequence_file = sys.argv[2]12 # Get STRs and their consecutive occurences in sequence13 with open(db_file) as db_stream:14 db_csv = csv.reader(db_stream)15 STRs = next(db_csv)[1::]16 str_occurence = {}17 for i in range(len(STRs)):18 str_occurence[STRs[i]] = str_repetitions(STRs[i], sequence_file)19 # Get CSV database as a list of people20 with open(db_file) as db_stream:21 db_csv_dict = csv.DictReader(db_stream)22 people = []23 for row in db_csv_dict:24 people.append(row)25 # Check for matches of sequence STRs for each person in people26 for person in people:27 str_matches = 028 for str_ in STRs:29 if int(person[str_]) == str_occurence[str_]:30 str_matches += 131 if str_matches == len(STRs):32 print(person['name'])33 sys.exit(0)34 print("No match")35# Return the number of consecutive occurences of the STR (str_seq) in the Sequence file (seq_file)36def str_repetitions(str_sequence, sequence_file):37 str_length = len(str_sequence)38 repetitions = 039 consecutive_matches = 040 pos = 041 # Read sequence_file into a buffer string42 with open(sequence_file) as sequence_stream:43 buffer = sequence_stream.read()44 buffer_len = len(buffer)45 i = 046 while i < buffer_len:47 cc = buffer[i]48 i += 149 if cc == str_sequence[pos]:50 pos += 151 if pos == str_length:52 repetitions += 153 if repetitions > consecutive_matches:54 consecutive_matches = repetitions55 pos = 056 else:57 i = i - pos58 pos = 059 repetitions = 060 return consecutive_matches...
Check out the latest blogs from LambdaTest on this topic:
I routinely come across test strategy documents when working with customers. They are lengthy—100 pages or more—and packed with monotonous text that is routinely reused from one project to another. Yawn once more— the test halt and resume circumstances, the defect management procedure, entrance and exit criteria, unnecessary generic risks, and in fact, one often-used model replicates the requirements of textbook testing, from stress to systems integration.
When I started writing tests with Cypress, I was always going to use the user interface to interact and change the application’s state when running tests.
Pair testing can help you complete your testing tasks faster and with higher quality. But who can do pair testing, and when should it be done? And what form of pair testing is best for your circumstance? Check out this blog for more information on how to conduct pair testing to optimize its benefits.
People love to watch, read and interact with quality content — especially video content. Whether it is sports, news, TV shows, or videos captured on smartphones, people crave digital content. The emergence of OTT platforms has already shaped the way people consume content. Viewers can now enjoy their favorite shows whenever they want rather than at pre-set times. Thus, the OTT platform’s concept of viewing anything, anytime, anywhere has hit the right chord.
Have you ever visited a website that only has plain text and images? Most probably, no. It’s because such websites do not exist now. But there was a time when websites only had plain text and images with almost no styling. For the longest time, websites did not focus on user experience. For instance, this is how eBay’s homepage looked in 1999.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!