Best Python code snippet using pandera_python
Chassis_Dashboard_Automated.py
Source:Chassis_Dashboard_Automated.py
...131132all_chassis_total_wty,all_chassis_cpc_cpu, all_chassis_top_customers,all_chassis_top_dealers, all_chassis_seag_info = get_final_files(st_date, ed_date, data_for_active_units, chassis_claims, "All_chassis")133 134all_chassis_top_dealers.reset_index(inplace = True)135all_chassis_total_wty = rename_columns('total_wty', all_chassis_total_wty)136all_chassis_cpc_cpu = rename_columns('cpc_cpu', all_chassis_cpc_cpu)137all_chassis_top_customers = rename_columns('top_customers', all_chassis_top_customers)138all_chassis_top_dealers = rename_columns('top_dealers', all_chassis_top_dealers)139140all_chassis_cpc_cpu['CPC'] = all_chassis_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)141all_chassis_cpc_cpu['CPU'] = all_chassis_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)142all_chassis = pd.concat([all_chassis_total_wty, all_chassis_cpc_cpu, all_chassis_top_customers,all_chassis_top_dealers,all_chassis_seag_info], axis =1)143all_chassis.to_csv(r'Z:/2000_Cost Management/2500_General Information/2502_Processes & Documentation/Tableau Documentation/All_dashboards_combined/All_chassis.csv', index = False)144 145p4_chassis_total_wty,p4_chassis_cpc_cpu, p4_chassis_top_customers,p4_chassis_top_dealers, p4_chassis_seag_info = get_final_files(st_date, ed_date, p4_contracts, p4_claims, "P4_chassis")146 147p4_chassis_top_dealers.reset_index(inplace = True)148p4_chassis_total_wty = rename_columns('total_wty', p4_chassis_total_wty)149p4_chassis_cpc_cpu = rename_columns('cpc_cpu', p4_chassis_cpc_cpu)150p4_chassis_top_customers = rename_columns('top_customers', p4_chassis_top_customers)151p4_chassis_top_dealers = rename_columns('top_dealers', p4_chassis_top_dealers)152153p4_chassis_cpc_cpu['CPC'] = p4_chassis_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)154p4_chassis_cpc_cpu['CPU'] = p4_chassis_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)155p4_chassis = pd.concat([p4_chassis_total_wty, p4_chassis_cpc_cpu, p4_chassis_top_customers,p4_chassis_top_dealers,p4_chassis_seag_info], axis =1)156p4_chassis.to_csv(r'Z:/2000_Cost Management/2500_General Information/2502_Processes & Documentation/Tableau Documentation/All_dashboards_combined/p4_chassis.csv', index = False)157158159seal_oil_total_wty,seal_oil_cpc_cpu, seal_oil_top_customers,seal_oil_top_dealers, seal_oil_seag_info = get_final_files(st_date, ed_date, seal_oil_contracts, seal_oil_claims, "seal_oil")160seal_oil_top_dealers.reset_index(inplace = True)161seal_oil_total_wty = rename_columns('total_wty', seal_oil_total_wty)162seal_oil_cpc_cpu = rename_columns('cpc_cpu', seal_oil_cpc_cpu)163seal_oil_top_customers = rename_columns('top_customers', seal_oil_top_customers)164seal_oil_top_dealers = rename_columns('top_dealers', seal_oil_top_dealers)165166seal_oil_paid_amt_bld_yr, seal_oil_total_claims_fail_miles_isy ,seal_oil_paid_amt_mis = get_secondary_data(seal_oil_claims)167seal_oil_paid_amt_bld_yr = rename_columns('bld_yr', seal_oil_paid_amt_bld_yr)168seal_oil_total_claims_fail_miles_isy = rename_columns('fail_miles', seal_oil_total_claims_fail_miles_isy)169seal_oil_paid_amt_mis = rename_columns('mis', seal_oil_paid_amt_mis)170171seal_oil_cpc_cpu['CPC'] = seal_oil_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)172seal_oil_cpc_cpu['CPU'] = seal_oil_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)173seal_oil = pd.concat([seal_oil_total_wty, seal_oil_cpc_cpu, seal_oil_top_customers,seal_oil_top_dealers,seal_oil_seag_info, seal_oil_paid_amt_bld_yr,seal_oil_total_claims_fail_miles_isy,seal_oil_paid_amt_mis], axis =1)174seal_oil.to_csv(r'Z:/2000_Cost Management/2500_General Information/2502_Processes & Documentation/Tableau Documentation/All_dashboards_combined/seal_oil.csv', index = False)175176177mirror_heated_convex_total_wty,mirror_heated_convex_cpc_cpu, mirror_heated_convex_top_customers,mirror_heated_convex_top_dealers, mirror_heated_convex_seag_info = get_final_files(st_date, ed_date, mirror_heated_convex_contracts, mirror_heated_convex_claims, "mirror_heated_convex")178mirror_heated_convex_top_dealers.reset_index(inplace = True)179mirror_heated_convex_total_wty = rename_columns('total_wty', mirror_heated_convex_total_wty)180mirror_heated_convex_cpc_cpu = rename_columns('cpc_cpu', mirror_heated_convex_cpc_cpu)181mirror_heated_convex_top_customers = rename_columns('top_customers', mirror_heated_convex_top_customers)182mirror_heated_convex_top_dealers = rename_columns('top_dealers', mirror_heated_convex_top_dealers)183184mirror_heated_convex_paid_amt_bld_yr, mirror_heated_convex_total_claims_fail_miles_isy ,mirror_heated_convex_paid_amt_mis = get_secondary_data(mirror_heated_convex_claims)185mirror_heated_convex_paid_amt_bld_yr = rename_columns('bld_yr', mirror_heated_convex_paid_amt_bld_yr)186mirror_heated_convex_total_claims_fail_miles_isy = rename_columns('fail_miles', mirror_heated_convex_total_claims_fail_miles_isy)187mirror_heated_convex_paid_amt_mis = rename_columns('mis', mirror_heated_convex_paid_amt_mis)188189mirror_heated_convex_cpc_cpu['CPC'] = mirror_heated_convex_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)190mirror_heated_convex_cpc_cpu['CPU'] = mirror_heated_convex_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)191mirror_heated_convex = pd.concat([mirror_heated_convex_total_wty, mirror_heated_convex_cpc_cpu, mirror_heated_convex_top_customers,mirror_heated_convex_top_dealers,mirror_heated_convex_seag_info, mirror_heated_convex_paid_amt_bld_yr,mirror_heated_convex_total_claims_fail_miles_isy,mirror_heated_convex_paid_amt_mis], axis =1)192mirror_heated_convex.to_csv(r'Z:/2000_Cost Management/2500_General Information/2502_Processes & Documentation/Tableau Documentation/All_dashboards_combined/mirror_heated_convex.csv', index = False)193194195core_tank_radiator_total_wty,core_tank_radiator_cpc_cpu, core_tank_radiator_top_customers,core_tank_radiator_top_dealers, core_tank_radiator_seag_info = get_final_files(st_date, ed_date, core_tank_radiator_contracts, core_tank_radiator_claims, "core_tank_radiator")196core_tank_radiator_top_dealers.reset_index(inplace = True)197core_tank_radiator_total_wty = rename_columns('total_wty', core_tank_radiator_total_wty)198core_tank_radiator_cpc_cpu = rename_columns('cpc_cpu', core_tank_radiator_cpc_cpu)199core_tank_radiator_top_customers = rename_columns('top_customers', core_tank_radiator_top_customers)200core_tank_radiator_top_dealers = rename_columns('top_dealers', core_tank_radiator_top_dealers)201202core_tank_radiator_paid_amt_bld_yr, core_tank_radiator_total_claims_fail_miles_isy ,core_tank_radiator_paid_amt_mis = get_secondary_data(core_tank_radiator_claims)203core_tank_radiator_paid_amt_bld_yr = rename_columns('bld_yr', core_tank_radiator_paid_amt_bld_yr)204core_tank_radiator_total_claims_fail_miles_isy = rename_columns('fail_miles', core_tank_radiator_total_claims_fail_miles_isy)205core_tank_radiator_paid_amt_mis = rename_columns('mis', core_tank_radiator_paid_amt_mis)206207core_tank_radiator_cpc_cpu['CPC'] = core_tank_radiator_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)208core_tank_radiator_cpc_cpu['CPU'] = core_tank_radiator_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)209core_tank_radiator = pd.concat([core_tank_radiator_total_wty, core_tank_radiator_cpc_cpu, core_tank_radiator_top_customers,core_tank_radiator_top_dealers,core_tank_radiator_seag_info, core_tank_radiator_paid_amt_bld_yr,core_tank_radiator_total_claims_fail_miles_isy,core_tank_radiator_paid_amt_mis], axis =1)210core_tank_radiator.to_csv(r'Z:/2000_Cost Management/2500_General Information/2502_Processes & Documentation/Tableau Documentation/All_dashboards_combined/core_tank_radiator.csv', index = False)211212213wiring_harness_total_wty,wiring_harness_cpc_cpu, wiring_harness_top_customers,wiring_harness_top_dealers, wiring_harness_seag_info = get_final_files(st_date, ed_date, wiring_harness_contracts, wiring_harness_claims, "wiring_harness")214wiring_harness_top_dealers.reset_index(inplace = True)215wiring_harness_total_wty = rename_columns('total_wty', wiring_harness_total_wty)216wiring_harness_cpc_cpu = rename_columns('cpc_cpu', wiring_harness_cpc_cpu)217wiring_harness_top_customers = rename_columns('top_customers', wiring_harness_top_customers)218wiring_harness_top_dealers = rename_columns('top_dealers', wiring_harness_top_dealers)219220wiring_harness_paid_amt_bld_yr, wiring_harness_total_claims_fail_miles_isy ,wiring_harness_paid_amt_mis = get_secondary_data(wiring_harness_claims)221wiring_harness_paid_amt_bld_yr = rename_columns('bld_yr', wiring_harness_paid_amt_bld_yr)222wiring_harness_total_claims_fail_miles_isy = rename_columns('fail_miles', wiring_harness_total_claims_fail_miles_isy)223wiring_harness_paid_amt_mis = rename_columns('mis', wiring_harness_paid_amt_mis)224225wiring_harness_cpc_cpu['CPC'] = wiring_harness_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)226wiring_harness_cpc_cpu['CPU'] = wiring_harness_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)227wiring_harness = pd.concat([wiring_harness_total_wty, wiring_harness_cpc_cpu, wiring_harness_top_customers,wiring_harness_top_dealers,wiring_harness_seag_info, wiring_harness_paid_amt_bld_yr,wiring_harness_total_claims_fail_miles_isy,wiring_harness_paid_amt_mis], axis =1)228wiring_harness.to_csv(r'Z:/2000_Cost Management/2500_General Information/2502_Processes & Documentation/Tableau Documentation/All_dashboards_combined/wiring_harness.csv', index = False)229230 231heater_aux_total_wty,heater_aux_cpc_cpu, heater_aux_top_customers,heater_aux_top_dealers, heater_aux_seag_info = get_final_files(st_date, ed_date, heater_aux_contracts, heater_aux_claims, "heater_aux")232heater_aux_top_dealers.reset_index(inplace = True)233heater_aux_total_wty = rename_columns('total_wty', heater_aux_total_wty)234heater_aux_cpc_cpu = rename_columns('cpc_cpu', heater_aux_cpc_cpu)235heater_aux_top_customers = rename_columns('top_customers', heater_aux_top_customers)236heater_aux_top_dealers = rename_columns('top_dealers', heater_aux_top_dealers)237238heater_aux_paid_amt_bld_yr, heater_aux_total_claims_fail_miles_isy ,heater_aux_paid_amt_mis = get_secondary_data(heater_aux_claims)239heater_aux_paid_amt_bld_yr = rename_columns('bld_yr', heater_aux_paid_amt_bld_yr)240heater_aux_total_claims_fail_miles_isy = rename_columns('fail_miles', heater_aux_total_claims_fail_miles_isy)241heater_aux_paid_amt_mis = rename_columns('mis', heater_aux_paid_amt_mis)242243heater_aux_cpc_cpu['CPC'] = heater_aux_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)244heater_aux_cpc_cpu['CPU'] = heater_aux_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)245heater_aux = pd.concat([heater_aux_total_wty, heater_aux_cpc_cpu, heater_aux_top_customers,heater_aux_top_dealers,heater_aux_seag_info, heater_aux_paid_amt_bld_yr,heater_aux_total_claims_fail_miles_isy,heater_aux_paid_amt_mis], axis =1)246heater_aux.to_csv(r'Z:/2000_Cost Management/2500_General Information/2502_Processes & Documentation/Tableau Documentation/All_dashboards_combined/heater_aux.csv', index = False)247248ac_compressor_total_wty,ac_compressor_cpc_cpu, ac_compressor_top_customers,ac_compressor_top_dealers, ac_compressor_seag_info = get_final_files(st_date, ed_date, ac_compressor_contracts, ac_compressor_claims, "ac_compressor")249ac_compressor_top_dealers.reset_index(inplace = True)250ac_compressor_total_wty = rename_columns('total_wty', ac_compressor_total_wty)251ac_compressor_cpc_cpu = rename_columns('cpc_cpu', ac_compressor_cpc_cpu)252ac_compressor_top_customers = rename_columns('top_customers', ac_compressor_top_customers)253ac_compressor_top_dealers = rename_columns('top_dealers', ac_compressor_top_dealers)254255ac_compressor_paid_amt_bld_yr, ac_compressor_total_claims_fail_miles_isy ,ac_compressor_paid_amt_mis = get_secondary_data(ac_compressor_claims)256ac_compressor_paid_amt_bld_yr = rename_columns('bld_yr', ac_compressor_paid_amt_bld_yr)257ac_compressor_total_claims_fail_miles_isy = rename_columns('fail_miles', ac_compressor_total_claims_fail_miles_isy)258ac_compressor_paid_amt_mis = rename_columns('mis', ac_compressor_paid_amt_mis)259260ac_compressor_cpc_cpu['CPC'] = ac_compressor_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Total_Claims_cpc_cpu'] if x['Total_Claims_cpc_cpu'] > 0 else 0, axis =1)261ac_compressor_cpc_cpu['CPU'] = ac_compressor_cpc_cpu.apply(lambda x: x['Total_Cost_cpc_cpu']/x['Active_Units'] if x['Active_Units'] >0 else 0, axis =1)262ac_compressor = pd.concat([ac_compressor_total_wty, ac_compressor_cpc_cpu, ac_compressor_top_customers,ac_compressor_top_dealers,ac_compressor_seag_info, ac_compressor_paid_amt_bld_yr,ac_compressor_total_claims_fail_miles_isy,ac_compressor_paid_amt_mis], axis =1)
...
reader.py
Source:reader.py
1from io import StringIO2import numpy as np3import pandas as pd4class TableDef:5 def __init__(self, table_id, end_table_tag, skip_rows=0, widths=None,6 df_drop_top_rows=None, df_drop_tail_rows=None, reset_header=False,7 rename_columns=None, convert_numerics=False, int_columns=None,8 index_col=None9 ):10 self.table_id = table_id11 self.end_table_tag = end_table_tag12 self.skip_rows = skip_rows13 self.widths = widths14 self.df_drop_top_rows = df_drop_top_rows15 self.df_drop_tail_rows = df_drop_tail_rows16 self.reset_header = reset_header17 self.rename_columns = rename_columns18 self.convert_numerics = convert_numerics19 self.int_columns = int_columns20 self.index_col = index_col21_table_parameters = {22 '1.02': TableDef('1.02', ' Adjustment of', skip_rows=3, df_drop_top_rows=1,23 df_drop_tail_rows=4, reset_header=False,24 rename_columns=None, convert_numerics=False, 25 int_columns=['BoardCount'],26 index_col=None),27 '2.04': TableDef('2.04', 'COUNT', skip_rows=10, df_drop_top_rows=1,28 df_drop_tail_rows=2, rename_columns={'Unnamed: 0': 'origin'},29 index_col = 'origin', convert_numerics=True,30 ),31 '2.05': TableDef('2.05',end_table_tag='-----------', skip_rows=5,32 df_drop_top_rows=1,df_drop_tail_rows=1,33 rename_columns={'Unnamed: 0': 'origin'}, index_col='origin',34 convert_numerics=True),35 '2.07': TableDef('2.07', end_table_tag='-----------', skip_rows=8, # 'df_drop_top_rows': 1,36 df_drop_tail_rows=1, reset_header=True, widths=[7, 11, 11, 11, 11],37 rename_columns={38 0: 'station_group',39 1: 'pre_calib_board',40 2: 'station_count',41 3: 'station_target',42 4: 'post_calib_board'43 },44 convert_numerics=True,int_columns='station_group', index_col='station_group'),45 '2.08': TableDef('2.08', end_table_tag='Number of unique', skip_rows=8, # 'df_drop_top_rows': 1,46 df_drop_tail_rows=1, reset_header=True, widths=[6, 22, 11, 11, 11, 10],47 rename_columns={48 0: 'route_group_num',49 1: 'route_group',50 2: 'pre_calib_board',51 3: 'route_count',52 4: 'route_target',53 5: 'post_calib_board'54 }, convert_numerics=True, #'int_columns': 'station_group',55 index_col='route_group_num'),56 '3.01': TableDef('3.01', end_table_tag='TOTAL', skip_rows=8,57 df_drop_top_rows=1, index_col='origin',58 rename_columns={'Unnamed: 0': 'origin'}),59 '3.02': TableDef('3.02', end_table_tag='TOTAL', skip_rows=8,60 df_drop_top_rows=1, index_col='origin',61 rename_columns={'Unnamed: 0': 'origin'}),62 '3.03': TableDef('3.03', end_table_tag='TOTAL', skip_rows=8,63 df_drop_top_rows=1, index_col='origin',64 rename_columns={'Unnamed: 0': 'origin'}),65 '4.01': TableDef('4.01', end_table_tag='Total', skip_rows=5,66 df_drop_top_rows=1,index_col='origin',67 rename_columns={'Idist': 'origin'}),68 69 '4.02': TableDef('4.02', end_table_tag='Total', skip_rows=5,70 df_drop_top_rows=1,index_col='origin',71 rename_columns={'Idist': 'origin'}),72 73 '4.04': TableDef('4.04', end_table_tag='Total', skip_rows=5,74 df_drop_top_rows=1,75 rename_columns={'Unnamed: 0': 'origin'}),76 '8.01': TableDef('8.01', end_table_tag='Total', skip_rows=5,77 df_drop_top_rows=1, index_col='origin',78 rename_columns={'Idist': 'origin'},79 convert_numerics=True80 ),81 # Stop Level Boardings82 '9.01': TableDef('9.01', end_table_tag='\x00', skip_rows=8,83 reset_header=True,84 rename_columns={85 0: 'stop_id', 1: 'station_name',86 2: 'exist_wlk', 3: 'exist_knr', 4: 'exist_pnr', 5: 'exist_xfr', 6: 'exist_all',87 7: 'nb_wlk', 8: 'nb_knr', 9: 'nb_pnr', 10: 'nb_xfr', 11: 'nb_all',88 12: 'bld_wlk', 13: 'bld_knr', 14: 'bld_pnr', 15: 'bld_xfr', 16: 'bld_all',89 },90 int_columns=['exist_wlk','exist_knr', 'exist_pnr', 'exist_xfr', 'exist_all',91 'nb_wlk', 'nb_knr', 'nb_pnr', 'nb_xfr', 'nb_all',92 'bld_wlk', 'bld_knr', 'bld_pnr', 'bld_xfr', 'bld_all']93 ),94 # Route Ridership95 '10.01': TableDef('10.01', end_table_tag=' Total', skip_rows=7,96 reset_header=True, widths=[25, 30] + [10] * 13, df_drop_top_rows=1,97 rename_columns={98 0: 'route_id', 1: 'route_name', 2: 'route_count',99 3: 'exist_wlk', 4: 'exist_knr', 5: 'exist_pnr', 6: 'exist_all',100 7: 'nb_wlk', 8: 'nb_knr', 9: 'nb_pnr', 10: 'nb_all',101 11: 'bld_wlk', 12: 'bld_knr', 13: 'bld_pnr', 14: 'bld_all',102 },103 int_columns=[104 'route_count',105 'exist_wlk', 'exist_knr', 'exist_pnr', 'exist_all',106 'nb_wlk', 'nb_knr', 'nb_pnr', 'nb_all',107 'bld_wlk', 'bld_knr', 'bld_pnr', 'bld_all',108 ]),109 #Existing - HBW - TRN - 0 Car110 '30.01': TableDef('30.01', end_table_tag='Total', skip_rows=5,111 df_drop_top_rows=1, index_col='origin',112 rename_columns={'Idist': 'origin'}, convert_numerics=True),113 114 #Existing - HBW - TRN - 1 Car115 '51.01': TableDef('51.01', end_table_tag='Total', skip_rows=5,116 df_drop_top_rows=1, index_col='origin',117 rename_columns={'Idist': 'origin'}, convert_numerics=True),118 119 #Existing - HBW - TRN - 2 Car120 '72.01': TableDef('72.01', end_table_tag='Total', skip_rows=5,121 df_drop_top_rows=1, index_col='origin',122 rename_columns={'Idist': 'origin'}, convert_numerics=True),123 124 #Existing - HBW - TRN - ALL125 '93.01': TableDef('93.01', end_table_tag='Total', skip_rows=5,126 df_drop_top_rows=1, index_col='origin',127 rename_columns={'Idist': 'origin'}, convert_numerics=True),128 #Existing - HBO - TRN - 0 Car129 '114.01': TableDef('114.01', end_table_tag='Total', skip_rows=5,130 df_drop_top_rows=1, index_col='origin',131 rename_columns={'Idist': 'origin'}, convert_numerics=True),132 #Existing - HBO - TRN - 1 Car133 '135.01': TableDef('135.01', end_table_tag='Total', skip_rows=5,134 df_drop_top_rows=1, index_col='origin',135 rename_columns={'Idist': 'origin'}, convert_numerics=True),136 137 #Existing - HBO - TRN - 2 Car138 '156.01': TableDef('156.01', end_table_tag='Total', skip_rows=5,139 df_drop_top_rows=1, index_col='origin',140 rename_columns={'Idist': 'origin'}, convert_numerics=True),141 #Existing - HBO - TRN - ALL142 '177.01': TableDef('177.01', end_table_tag='Total', skip_rows=5,143 df_drop_top_rows=1, index_col='origin',144 rename_columns={'Idist': 'origin'}, convert_numerics=True),145 #Existing - NHB - TRN - 0 Car146 '198.01': TableDef('198.01', end_table_tag='Total', skip_rows=5,147 df_drop_top_rows=1, index_col='origin',148 rename_columns={'Idist': 'origin'}, convert_numerics=True),149 150 #Existing - NHB - TRN - 1 Car151 '219.01': TableDef('219.01', end_table_tag='Total', skip_rows=5,152 df_drop_top_rows=1, index_col='origin',153 rename_columns={'Idist': 'origin'}, convert_numerics=True),154 155 #Existing - NHB - TRN - 2 Car156 '240.01': TableDef('240.01', end_table_tag='Total', skip_rows=5,157 df_drop_top_rows=1, index_col='origin',158 rename_columns={'Idist': 'origin'}, convert_numerics=True),159 160 #Existing - NHB - TRN - ALL161 '261.01': TableDef('261.01', end_table_tag='Total', skip_rows=5,162 df_drop_top_rows=1, index_col='origin',163 rename_columns={'Idist': 'origin'}, convert_numerics=True),164 #Existing - All Trips - TRN - 0 Car165 '282.01': TableDef('282.01', end_table_tag='Total', skip_rows=5,166 df_drop_top_rows=1, index_col='origin',167 rename_columns={'Idist': 'origin'}, convert_numerics=True),168 169 #Existing - All Trips - TRN - 1 Car170 '303.01': TableDef('303.01', end_table_tag='Total', skip_rows=5,171 df_drop_top_rows=1, index_col='origin',172 rename_columns={'Idist': 'origin'}, convert_numerics=True),173 174 #Existing - All Trips - TRN - 2 Car175 '324.01': TableDef('324.01', end_table_tag='Total', skip_rows=5,176 df_drop_top_rows=1, index_col='origin',177 rename_columns={'Idist': 'origin'}, convert_numerics=True),178 179 #Existing - All Trips - TRN - ALL180 '345.01': TableDef('345.01', end_table_tag='Total', skip_rows=5,181 df_drop_top_rows=1, index_col='origin',182 rename_columns={'Idist': 'origin'}, convert_numerics=True),183 # No Build - HBW - TRN - 0 Car184 '366.01': TableDef('366.01', end_table_tag='Total', skip_rows=5,185 df_drop_top_rows=1, index_col='origin',186 rename_columns={'Idist': 'origin'}, convert_numerics=True),187 188 # No Build - HBW - TRN - 1 Car189 '387.01': TableDef('387.01', end_table_tag='Total', skip_rows=5,190 df_drop_top_rows=1, index_col='origin',191 rename_columns={'Idist': 'origin'}, convert_numerics=True),192 193 # No Build - HBW - TRN - 2 Car194 '408.01': TableDef('408.01', end_table_tag='Total', skip_rows=5,195 df_drop_top_rows=1, index_col='origin',196 rename_columns={'Idist': 'origin'}, convert_numerics=True),197 # No Build - HBW - TRN - ALL198 '429.01': TableDef('429.01', end_table_tag='Total', skip_rows=5,199 df_drop_top_rows=1, index_col='origin',200 rename_columns={'Idist': 'origin'}, convert_numerics=True),201 # No Build - HBO - TRN - O Car202 '450.01': TableDef('450.01', end_table_tag='Total', skip_rows=5,203 df_drop_top_rows=1, index_col='origin',204 rename_columns={'Idist': 'origin'}, convert_numerics=True),205 206 # No Build - HBO - TRN - 1 Car207 '471.01': TableDef('471.01', end_table_tag='Total', skip_rows=5,208 df_drop_top_rows=1, index_col='origin',209 rename_columns={'Idist': 'origin'}, convert_numerics=True),210 211 # No Build - HBO - TRN - 2 Car212 '492.01': TableDef('492.01', end_table_tag='Total', skip_rows=5,213 df_drop_top_rows=1, index_col='origin',214 rename_columns={'Idist': 'origin'}, convert_numerics=True),215 216 # No Build - HBO - TRN - ALL217 '513.01': TableDef('513.01', end_table_tag='Total', skip_rows=5,218 df_drop_top_rows=1, index_col='origin',219 rename_columns={'Idist': 'origin'}, convert_numerics=True),220 # No Build - NHB - TRN - 0 Car221 '534.01': TableDef('534.01', end_table_tag='Total', skip_rows=5,222 df_drop_top_rows=1, index_col='origin',223 rename_columns={'Idist': 'origin'}, convert_numerics=True),224 # No Build - NHB - TRN - 1 Car225 '555.01': TableDef('555.01', end_table_tag='Total', skip_rows=5,226 df_drop_top_rows=1, index_col='origin',227 rename_columns={'Idist': 'origin'}, convert_numerics=True),228 # No Build - NHB - TRN - 2 Car229 '576.01': TableDef('576.01', end_table_tag='Total', skip_rows=5,230 df_drop_top_rows=1, index_col='origin',231 rename_columns={'Idist': 'origin'}, convert_numerics=True),232 233 # No Build - NHB - TRN - ALL234 '597.01': TableDef('597.01', end_table_tag='Total', skip_rows=5,235 df_drop_top_rows=1, index_col='origin',236 rename_columns={'Idist': 'origin'}, convert_numerics=True),237 # No Build - All Trips - TRN - 0 Car238 '618.01': TableDef('618.01', end_table_tag='Total', skip_rows=5,239 df_drop_top_rows=1, index_col='origin',240 rename_columns={'Idist': 'origin'}, convert_numerics=True),241 # No Build - All Trips - TRN - 1 Car242 '639.01': TableDef('639.01', end_table_tag='Total', skip_rows=5,243 df_drop_top_rows=1, index_col='origin',244 rename_columns={'Idist': 'origin'}, convert_numerics=True),245 # No Build - All Trips - TRN - 2 Car246 '660.01': TableDef('660.01', end_table_tag='Total', skip_rows=5,247 df_drop_top_rows=1, index_col='origin',248 rename_columns={'Idist': 'origin'}, convert_numerics=True),249 # No Build - All Trips - TRN - ALL250 '681.01': TableDef('681.01', end_table_tag='Total', skip_rows=5,251 df_drop_top_rows=1, index_col='origin',252 rename_columns={'Idist': 'origin'}, convert_numerics=True),253 # Build - HBW - TRN - 0 Car254 '702.01': TableDef('702.01', end_table_tag='Total', skip_rows=5,255 df_drop_top_rows=1, index_col='origin',256 rename_columns={'Idist': 'origin'}, convert_numerics=True),257 # Build - HBW - TRN - 1 Car258 '723.01': TableDef('723.01', end_table_tag='Total', skip_rows=5,259 df_drop_top_rows=1, index_col='origin',260 rename_columns={'Idist': 'origin'}, convert_numerics=True),261 # Build - HBW - TRN - 2 Car262 '744.01': TableDef('744.01', end_table_tag='Total', skip_rows=5,263 df_drop_top_rows=1, index_col='origin',264 rename_columns={'Idist': 'origin'}, convert_numerics=True),265 266 # Build - HBW - TRN - ALL267 '765.01': TableDef('765.01', end_table_tag='Total', skip_rows=5,268 df_drop_top_rows=1, index_col='origin',269 rename_columns={'Idist': 'origin'}, convert_numerics=True),270 # Build - HBO - TRN - 0 Car271 '786.01': TableDef('786.01', end_table_tag='Total', skip_rows=5,272 df_drop_top_rows=1, index_col='origin',273 rename_columns={'Idist': 'origin'}, convert_numerics=True),274 # Build - HBO - TRN - 1 Car275 '807.01': TableDef('807.01', end_table_tag='Total', skip_rows=5,276 df_drop_top_rows=1, index_col='origin',277 rename_columns={'Idist': 'origin'}, convert_numerics=True),278 # Build - HBO - TRN - 2 Car279 '828.01': TableDef('828.01', end_table_tag='Total', skip_rows=5,280 df_drop_top_rows=1, index_col='origin',281 rename_columns={'Idist': 'origin'}, convert_numerics=True),282 # Build - HBO - TRN - ALL283 '849.01': TableDef('849.01', end_table_tag='Total', skip_rows=5,284 df_drop_top_rows=1, index_col='origin',285 rename_columns={'Idist': 'origin'}, convert_numerics=True),286 # Build - NHB - TRN - 0 Car287 '870.01': TableDef('870.01', end_table_tag='Total', skip_rows=5,288 df_drop_top_rows=1, index_col='origin',289 rename_columns={'Idist': 'origin'}, convert_numerics=True),290 # Build - NHB - TRN - 1 Car291 '891.01': TableDef('891.01', end_table_tag='Total', skip_rows=5,292 df_drop_top_rows=1, index_col='origin',293 rename_columns={'Idist': 'origin'}, convert_numerics=True),294 # Build - NHB - TRN - 2 Car295 '912.01': TableDef('912.01', end_table_tag='Total', skip_rows=5,296 df_drop_top_rows=1, index_col='origin',297 rename_columns={'Idist': 'origin'}, convert_numerics=True),298 # Build - NHB - TRN - ALL299 '933.01': TableDef('933.01', end_table_tag='Total', skip_rows=5,300 df_drop_top_rows=1, index_col='origin',301 rename_columns={'Idist': 'origin'}, convert_numerics=True),302 # Build - All Trips - TRN - ALL303 '954.01': TableDef('954.01', end_table_tag='Total', skip_rows=5,304 df_drop_top_rows=1, index_col='origin',305 rename_columns={'Idist': 'origin'}, convert_numerics=True),306 # Build - All Trips - TRN - ALL307 '975.01': TableDef('975.01', end_table_tag='Total', skip_rows=5,308 df_drop_top_rows=1, index_col='origin',309 rename_columns={'Idist': 'origin'}, convert_numerics=True),310 # Build - All Trips - TRN - ALL311 '996.01': TableDef('996.01', end_table_tag='Total', skip_rows=5,312 df_drop_top_rows=1, index_col='origin',313 rename_columns={'Idist': 'origin'}, convert_numerics=True),314 # Build - All Trips - TRN - ALL315 '1017.01': TableDef('1017.01', end_table_tag='Total', skip_rows=5,316 df_drop_top_rows=1, index_col='origin',317 rename_columns={'Idist': 'origin'}, convert_numerics=True),318}319def parse_table(result_file_path, table_label):320 def replace_dash(x):321 return 0 if x == '-' else x322 table_def = _table_parameters[table_label]323 start_table_tag = 'Table{:>9s}\n'.format(table_def.table_id)324 end_table_tag = table_def.end_table_tag325 skip_rows = table_def.skip_rows326 found_table = False327 table = StringIO('')328 with open(result_file_path, 'r') as result_file:329 for line in result_file:330 if line.startswith(start_table_tag):331 found_table = True332 if found_table:333 if line.startswith(end_table_tag):334 found_table = False335 else:336 table.write(line)337 table.seek(0)338 df = pd.read_fwf(table, widths=table_def.widths, skiprows=skip_rows)339 if table_def.df_drop_top_rows is not None:340 df = df[table_def.df_drop_top_rows:]341 if table_def.df_drop_tail_rows is not None:342 df = df[:-table_def.df_drop_tail_rows]343 if table_def.reset_header:344 columns = df.columns345 df.columns = np.arange(len(columns))346 if table_def.rename_columns is not None:347 df = df.rename(columns=table_def.rename_columns)348 if table_def.int_columns is not None or table_def.convert_numerics:349 df = df.applymap(np.vectorize(replace_dash))350 if table_def.int_columns is not None:351 df[table_def.int_columns] = df[table_def.int_columns].astype(np.int64)352 if table_def.index_col is not None:353 df = df.set_index(table_def.index_col)354 if table_def.convert_numerics:355 df = df.apply(pd.to_numeric)356 return df.copy()357def summarize_access_modes(result_file_path, percentage=False):358 table_label = '9.01'359 tbl = parse_table(result_file_path, table_label)360 table_def = _table_parameters[table_label]361 362 if not percentage:363 return tbl[table_def.int_columns].sum()364 365 exist = tbl[['exist_wlk','exist_knr', 'exist_pnr', 'exist_xfr']].sum() / tbl[['exist_wlk','exist_knr', 'exist_pnr', 'exist_xfr']].sum().sum()366 nb = tbl[['nb_wlk', 'nb_knr', 'nb_pnr', 'nb_xfr']].sum() / tbl[['nb_wlk', 'nb_knr', 'nb_pnr', 'nb_xfr']].sum().sum()367 bld = tbl[['bld_wlk', 'bld_knr', 'bld_pnr', 'bld_xfr']].sum() / tbl[['bld_wlk', 'bld_knr', 'bld_pnr', 'bld_xfr']].sum().sum()368 369 exist.index = exist.index.str[-3:]370 nb.index = nb.index.str[-3:]371 bld.index = bld.index.str[-3:]372 373 return pd.concat([exist, nb, bld], axis=1, keys=['existing', 'nb', 'bld']).transpose()...
headers_cleanup.py
Source:headers_cleanup.py
1"""2Helper functions to cleanup the headers from the various data sources.3This helps make the final product more human readable.4"""5HEADERS_CHANGE = {6 'elections_2020': {7 'rename_columns': {8 'fips5': 'county_fips'9 },10 'drop_columns': {11 'fips_char', 'place', 'fname', 'lname', 'pab', 'incumbent', 'mpc'12 }13 },14 'census_2019': {15 'rename_columns': {16 'state': 'state_fips_part',17 'county': 'county_fips_part',18 'popestimate2019': 'county_population'19 },20 'drop_columns': {21 'sumlev', 'region', 'division', 'stname', 'ctyname', 'census2010pop',22 'estimatesbase2010', 'popestimate2010', 'popestimate2011',23 'popestimate2012', 'popestimate2013', 'popestimate2014',24 'popestimate2015', 'popestimate2016', 'popestimate2017',25 'popestimate2018', 'npopchg_2010', 'npopchg_2011', 'npopchg_2012',26 'npopchg_2013', 'npopchg_2014', 'npopchg_2015', 'npopchg_2016',27 'npopchg_2017', 'npopchg_2018', 'npopchg_2019', 'births2010',28 'births2011', 'births2012', 'births2013', 'births2014', 'births2015',29 'births2016', 'births2017', 'births2018', 'births2019', 'deaths2010',30 'deaths2011', 'deaths2012', 'deaths2013', 'deaths2014', 'deaths2015',31 'deaths2016', 'deaths2017', 'deaths2018', 'deaths2019', 'naturalinc2010',32 'naturalinc2011', 'naturalinc2012', 'naturalinc2013', 'naturalinc2014',33 'naturalinc2015', 'naturalinc2016', 'naturalinc2017', 'naturalinc2018',34 'naturalinc2019', 'internationalmig2010', 'internationalmig2011',35 'internationalmig2012', 'internationalmig2013', 'internationalmig2014',36 'internationalmig2015', 'internationalmig2016', 'internationalmig2017',37 'internationalmig2018', 'internationalmig2019', 'domesticmig2010',38 'domesticmig2011', 'domesticmig2012', 'domesticmig2013',39 'domesticmig2014', 'domesticmig2015', 'domesticmig2016',40 'domesticmig2017', 'domesticmig2018', 'domesticmig2019', 'netmig2010',41 'netmig2011', 'netmig2012', 'netmig2013', 'netmig2014', 'netmig2015',42 'netmig2016', 'netmig2017', 'netmig2018', 'netmig2019', 'residual2010',43 'residual2011', 'residual2012', 'residual2013', 'residual2014',44 'residual2015', 'residual2016', 'residual2017', 'residual2018',45 'residual2019', 'gqestimatesbase2010', 'gqestimates2010',46 'gqestimates2011', 'gqestimates2012', 'gqestimates2013',47 'gqestimates2014', 'gqestimates2015', 'gqestimates2016',48 'gqestimates2017', 'gqestimates2018', 'gqestimates2019', 'rbirth2011',49 'rbirth2012', 'rbirth2013', 'rbirth2014', 'rbirth2015', 'rbirth2016',50 'rbirth2017', 'rbirth2018', 'rbirth2019', 'rdeath2011', 'rdeath2012',51 'rdeath2013', 'rdeath2014', 'rdeath2015', 'rdeath2016', 'rdeath2017',52 'rdeath2018', 'rdeath2019', 'rnaturalinc2011', 'rnaturalinc2012',53 'rnaturalinc2013', 'rnaturalinc2014', 'rnaturalinc2015',54 'rnaturalinc2016', 'rnaturalinc2017', 'rnaturalinc2018',55 'rnaturalinc2019', 'rinternationalmig2011', 'rinternationalmig2012',56 'rinternationalmig2013', 'rinternationalmig2014', 'rinternationalmig2015',57 'rinternationalmig2016', 'rinternationalmig2017', 'rinternationalmig2018',58 'rinternationalmig2019', 'rdomesticmig2011', 'rdomesticmig2012',59 'rdomesticmig2013', 'rdomesticmig2014', 'rdomesticmig2015',60 'rdomesticmig2016', 'rdomesticmig2017', 'rdomesticmig2018',61 'rdomesticmig2019', 'rnetmig2011', 'rnetmig2012', 'rnetmig2013',62 'rnetmig2014', 'rnetmig2015', 'rnetmig2016', 'rnetmig2017', 'rnetmig2018',63 'rnetmig2019'64 }65 },66 'cdc': {67 'rename_columns': {68 'fips county code': 'county_fips',69 'deaths involving covid-19': 'county_covid19_deaths',70 'deaths from all causes': 'county_all_cause_deaths',71 },72 'drop_columns': [73 'date as of', 'start date', 'end date', 'state', 'county name',74 'urban rural code', 'footnote'75 ]76 },77 'zillow_city_codes': {78 'rename_columns': {79 'code': 'city_code'80 },81 'drop_columns': ['area']82 },83 'experian': {84 'rename_columns': {85 'city ': 'city',86 'vantagescore 3.0 credit score': 'credit score',87 'avg vantagescore 3.0': 'credit score',88 'average vantagescore 3.0 credit score': 'credit score',89 'avg. vantagescore 3.0': 'credit score',90 'weighted vantage score': 'credit score',91 'sum of adjusted credit score': 'credit score',92 ' average vantagescore 3.0 credit score': 'credit score',93 'vantage score': 'credit score',94 'county name': 'county',95 },96 'drop_columns': ['rank', 'population', 'unnamed: 5', 'unnamed: 4']97 },98 'fbi_2015': {99 'rename_columns': {100 'rape (revised definition)1': 'rape',101 'larceny- theft': 'larceny theft',102 'arson3': 'arson',103 },104 'drop_columns': ['rape (legacy definition)2'],105 },106 'fbi_2016': {107 'rename_columns': {108 'rape (revised definition)1': 'rape',109 'larceny- theft': 'larceny theft',110 'arson3': 'arson',111 },112 'drop_columns': ['rape (legacy definition)2'],113 },114 'fbi_2017': {115 'rename_columns': {116 'rape1': 'rape',117 'larceny- theft': 'larceny theft',118 'arson2': 'arson',119 },120 'drop_columns': [121 'unnamed: 13',122 'unnamed: 14',123 'unnamed: 15',124 'unnamed: 16',125 'unnamed: 17',126 'unnamed: 18',127 ]128 },129 'fbi_2018': {130 'rename_columns': {131 'rape1': 'rape',132 'larceny- theft': 'larceny theft',133 'arson2': 'arson',134 },135 'drop_columns': []136 },137 'fbi_2019': {138 'rename_columns': {139 'rape1': 'rape',140 'larceny- theft': 'larceny theft',141 'arson2': 'arson',142 },143 'drop_columns': []144 },145 'census_2010': {146 'rename_columns': {147 'area in square miles - land area': 'land area sqmi census_2010',148 'area in square miles - total area': 'total area sqmi census_2010',149 'area in square miles - water area': 'water area sqmi census_2010',150 'target geo id2': 'geoid'151 },152 'drop_columns': [153 'density per square mile of land area - housing units',154 'density per square mile of land area - population', 'geographic area',155 'geographic area.1', 'geography', 'housing units', 'id', 'id2',156 'population', 'target geo id'157 ]158 },159 'final_csv': {160 'rename_columns': {},161 'drop_columns': [162 'city_code', 'city_fbi_crime', 'city_walkscore', 'cityexperian_2017',163 'cityzillow', 'geography census_2010', 'geography.1', 'geography.2',164 'latitudezillow', 'longitudezillow', 'rape_legacy', 'reverse_address',165 'state_fbi_crime', 'state_fbi_crime', 'state_walkscore',166 'state_walkscore', 'stateexperian_2017', 'statezillow', 'target geo id2',167 'longitude_x', 'longitude_y', 'latitude_x', 'latitude_y',168 'reverse_address_x', 'reverse_address_y'169 ]170 }...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!