Best Python code snippet using pandera_python
functions.py
Source:functions.py
...169 largest=True,170 short=True,171 )172 )173def pretty_param(param, value=None):174 if isinstance(param, str):175 return unit_of.get(param.split(".")[0], "{}").format(value)176 elif isinstance(param, dict):177 return [178 f"{param_}: {pretty_param(param_, value_)}"179 for param_, value_ in param.items()180 ]181 else:182 print(f"{NAME}.pretty_param({param.__class__.__name__}), class not found.")183def pretty_shape(shape):184 """describe shape as a string.185 Args:186 shape (List[int]): shape.187 Returns:188 str: shape as string.189 """190 return "x".join([str(value) for value in list(shape)])191def pretty_shape_of_matrix(matrix):192 """describe size of matrix as a string.193 Args:194 matrix (Any): matrix.195 Returns:196 str: size of matrix....
elasticsearch.py
Source:elasticsearch.py
...19 not create new cluster!")20@require_basic_auth21class ElasticsearchClusterInitHandler(ElasticSearchBaseHandler):22 def post(self):23 param = self.pretty_param()24 cluster_name = param['clusterName']25 self.check_cluster(cluster_name)26 self.elastic_op.init_cluster(param)27 self.finish({"message": "creating cluster successful!"})28@require_basic_auth29class ElasticsearchNodeInitHandler(ElasticSearchBaseHandler):30 def post(self):31 param = self.pretty_param()32 self.elastic_op.init_node(param)33 self.finish({"message": "creating cluster successful!"})34@require_basic_auth35class ElasticsearchNodeSyncHandler(ElasticSearchBaseHandler):36 def post(self):37 param = self.pretty_param()38 zk_op = self.get_zkoper()39 if zk_op.cluster_exists(param['clusterName']):40 self.elastic_op.sync_node(param['clusterName'])41 self.finish({"message": "sync cluster info successful!"})42@require_basic_auth43class ElasticsearchConfigHandler(ElasticSearchBaseHandler):44 """45 function: start node46 url example: curl --user root:root -d "" "http://localhost:9999/elasticsearch/config"47 """48 def post(self):49 param = self.pretty_param()50 es_heap_size = int(param.get('es_heap_size', ES_HEAP_SIZE))51 if es_heap_size < ES_HEAP_SIZE:52 self.set_status(500)53 self.finish({"message": "para not valid!"})54 return55 self.elastic_op.config()56 self.elastic_op.sys_config(57 es_heap_size='%dg' % (es_heap_size / ES_HEAP_SIZE))58 self.finish({"message": "config cluster successful!"})59@require_basic_auth60class Elasticsearch_Start_Handler(ElasticSearchBaseHandler):61 def post(self):62 """63 function: start node...
visualizations.py
Source:visualizations.py
1from typing import List, Tuple2import matplotlib.pyplot as plt3import numpy as np4import pandas as pd5import seaborn as sns6def plot_metric_score_variation(7 data: pd.DataFrame, param: str, colors: list,8 xytext_locs: List[Tuple[int, int]], scale_y_axis: bool = True9) -> None:10 pretty_param = param.split('__')[1]11 titles = [12 'F-Score', 'G-Mean', 'Precision',13 'Recall', 'ROC AUC', 'Specificity']14 # get list of metrics to plot15 metrics_to_plot = [16 col.replace('mean_test_', '')17 for col in data.columns18 if col.startswith('mean_test_')]19 # plot metric score variation in relation with a param change by experiment20 fig = plt.figure(figsize=[10, 13])21 plt.suptitle(f'Variación de "{pretty_param}"', fontsize=14)22 plot_params = {'data': data, 'x': param}23 for index, metric in enumerate(metrics_to_plot):24 test_metric = f'mean_test_{metric}'25 train_metric = f'mean_train_{metric}'26 plt.subplot(3, 2, index+1)27 sns.lineplot(28 **plot_params,29 y=test_metric,30 label=f'test',31 color=colors[0])32 ax = sns.lineplot(33 **plot_params,34 y=train_metric,35 label=f'train',36 color=colors[1])37 set_lineplot_annotation(ax, colors, xytext_locs)38 plt.legend().remove()39 plt.title(titles[index], fontsize=14)40 plt.xlabel(pretty_param)41 plt.ylabel('puntuación')42 plt.ylim([0, 1]) if scale_y_axis else None43 handles, labels = ax.get_legend_handles_labels()44 fig.legend( # title='Legenda'45 handles, labels, loc='upper center',46 bbox_to_anchor=(0.5, 0.965),47 ncol=2, fancybox=True, shadow=False,48 facecolor='white', edgecolor='grey')49 plt.tight_layout()50def set_lineplot_annotation(ax, colors: list, xytext_locs: List[Tuple[int, int]] = None) -> None:51 tex_locs = ['top', 'bottom']52 xytext_locs = xytext_locs or [(0, 0), (0, 0)]53 annotate_params = {54 'xytext': (0, 0),55 'textcoords': "offset points",56 'ha': 'center',57 'weight': 'bold',58 'bbox': {59 'boxstyle': 'round,pad=0.3',60 'fc': 'white',61 'alpha': 0.5}}62 for i, line in enumerate(ax.lines):63 annotate_params.update(64 {'xytext': xytext_locs[i], 'va': tex_locs[i], 'color': colors[i]})65 y_max = np.max(line.get_ydata())66 max_index = np.where(line.get_ydata() == y_max)[0][0]67 x_max = line.get_xdata()[max_index]68 ax.annotate(69 '{:.2f}%'.format(y_max*100),70 (x_max, y_max),71 **annotate_params)72 y_min = np.min(line.get_ydata())73 min_index = np.where(line.get_ydata() == y_min)[0][0]74 x_min = line.get_xdata()[min_index]75 ax.annotate(76 '{:.2f}%'.format(y_min*100),77 (x_min, y_min),...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!