How to use numpy_pandas_coercible method in pandera

Best Python code snippet using pandera_python

utils.py

Source:utils.py Github

copy

Full Screen

...4import numpy as np5import pandas as pd6from .. import check_utils7from .type_aliases import PandasObject8def numpy_pandas_coercible(series: pd.Series, type_: Any) -> pd.Series:9 """Checks whether a series is coercible with respect to a type.10 Bisects the series until all the failure cases are found.11 NOTE: this does not account for koalas .astype behavior, which defaults12 to converting uncastable values to NA values.13 """14 # pylint: disable=import-outside-toplevel,cyclic-import15 from pandera.engines import pandas_engine16 data_type = pandas_engine.Engine.dtype(type_)17 def _bisect(series):18 assert (19 series.shape[0] >= 220 ), "cannot bisect a pandas Series of length < 2"21 bisect_index = series.shape[0] // 222 return [series.iloc[:bisect_index], series.iloc[bisect_index:]]23 def _coercible(series):24 try:25 data_type.coerce(series)26 return True27 except Exception: # pylint:disable=broad-except28 return False29 search_list = [series] if series.size == 1 else _bisect(series)30 failure_index = []31 while search_list:32 candidates = []33 for _series in search_list:34 if _series.shape[0] == 1 and not _coercible(_series):35 # if series is reduced to a single value and isn't coercible,36 # keep track of its index value.37 failure_index.append(_series.index.item())38 elif not _coercible(_series):39 # if the series length > 1, add it to the candidates list40 # to be further bisected41 candidates.append(_series)42 # the new search list is a flat list of bisected series views.43 search_list = list(44 itertools.chain.from_iterable([_bisect(c) for c in candidates])45 )46 # NOTE: this is a hack to support koalas. This needs to be thoroughly47 # tested, right now koalas returns NA when a dtype value can't be coerced48 # into the target dtype.49 if type(series).__module__.startswith(50 "databricks.koalas"51 ): # pragma: no cover52 out = type(series)(53 series.index.isin(failure_index).to_series().to_numpy(), # type: ignore[union-attr]54 index=series.index.values.to_numpy(),55 name=series.name,56 )57 out.index.name = series.index.name58 return out59 return pd.Series(~series.index.isin(failure_index), index=series.index)60def numpy_pandas_coerce_failure_cases(61 data_container: Union[PandasObject, np.ndarray], type_: Any62) -> PandasObject:63 """64 Get the failure cases resulting from trying to coerce a pandas/numpy object65 into particular data type.66 """67 # pylint: disable=import-outside-toplevel,cyclic-import68 from pandera import error_formatters69 from pandera.engines import pandas_engine70 data_type = pandas_engine.Engine.dtype(type_)71 if isinstance(data_container, np.ndarray):72 if len(data_container.shape) == 1:73 data_container = pd.Series(data_container)74 elif len(data_container.shape) == 2:75 data_container = pd.DataFrame(data_container)76 else:77 raise ValueError(78 "only numpy arrays of 1 or 2 dimensions are supported"79 )80 if check_utils.is_index(data_container):81 data_container = data_container.to_series() # type: ignore[union-attr]82 if check_utils.is_table(data_container):83 check_output = data_container.apply( # type: ignore[union-attr]84 numpy_pandas_coercible,85 args=(data_type,),86 )87 _, failure_cases = check_utils.prepare_dataframe_check_output(88 data_container,89 check_output,90 ignore_na=False,91 )92 elif check_utils.is_field(data_container):93 check_output = numpy_pandas_coercible(data_container, data_type)94 _, failure_cases = check_utils.prepare_series_check_output(95 data_container,96 check_output,97 ignore_na=False,98 )99 else:100 raise TypeError(101 f"type of data_container {type(data_container)} not understood. "102 "Must be a pandas Series, Index, or DataFrame."103 )104 return error_formatters.reshape_failure_cases(105 failure_cases, ignore_na=False...

Full Screen

Full Screen

test_engine_utils.py

Source:test_engine_utils.py Github

copy

Full Screen

...10 [pd.Series(list("12345")), int, [True] * 5],11 [pd.Series([1, 2, "foo", "bar"]), float, [True, True, False, False]],12 ],13)14def test_numpy_pandas_coercible(15 data_container, data_type, expected_failure_cases16):17 """Test that the correct boolean Series outputs are returned."""18 assert (19 expected_failure_cases20 == utils.numpy_pandas_coercible(data_container, data_type).tolist()21 )22@pytest.mark.parametrize(23 "data_container",24 [25 pd.Series([1, 2, 3, 4]),26 np.array([1, 2, 3, 4]),27 pd.DataFrame({0: [1, 2, 3, 4]}),28 np.array([[1], [2], [3], [4]]),29 ],30)31def test_numpy_pandas_coerce_failure_cases(data_container):32 """33 Test that different data container types can be checked for coerce failure34 cases....

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run pandera automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful