Best Python code snippet using pandera_python
test_strategies.py
Source:test_strategies.py
...118 assert (119 data.draw(strategies.lt_strategy(data_type, max_value=value)) < value120 )121 assert (122 data.draw(strategies.le_strategy(data_type, max_value=value)) <= value123 )124def value_ranges(data_type: pa.DataType):125 """Strategy to generate value range based on PandasDtype"""126 kwargs = dict(127 allow_nan=False,128 allow_infinity=False,129 exclude_min=False,130 exclude_max=False,131 )132 return (133 st.tuples(134 strategies.pandas_dtype_strategy(135 data_type, strategy=None, **kwargs136 ),...
train.py
Source:train.py
1import pandas as pd 2from sklearn_pandas import DataFrameMapper3import sys4class Train:5 def __init__(self, aCSVTrain, aCSVTest, aCSVResult):6 self.arqCSVTrain = aCSVTrain 7 self.arqCSVTest = aCSVTest8 self.arqCSVResult = aCSVResult9 self.df = pd.read_csv(aCSVTrain)10 self.df_final = pd.read_csv(aCSVTrain)11 def getDeckComplete(self):12 return self.df_final.to_json(orient='records')13 def arqResultExiste(self):14 try: 15 os.path.isfile(self.arqCSVResult)16 self.df_final = pd.read_csv(self.arqCSVResult)17 return True18 except:19 return False20 def findCardById(self, id): 21 return self.df_final[self.df_final.id==id].to_json(orient='records')22 def fit(self):23 #criando uma variavel auxiliar pra manipular o Dataframe Original (challenge_train)24 inputs = self.df25 # importando a biblioteca LabelEncoder, para transformar labels em números inteiros. 26 from sklearn.preprocessing import LabelEncoder27 #Criando as variaveis de manipulação dos labels28 le_type = LabelEncoder()29 le_god = LabelEncoder()30 le_strategy = LabelEncoder()31 inputs['type_n'] = le_type.fit_transform(inputs['type'])32 inputs['god_n'] = le_god.fit_transform(inputs['god'])33 inputs['strategy_n'] = le_strategy.fit_transform(inputs['strategy'])34 #Retirando a coluna alvo35 inputs = self.df.drop('strategy', axis = 'columns')36 #Criando um novo Dataframe somente com a coluna alvo, a que queremos "aprender"37 target = self.df['strategy_n']38 #Retirando do Dataframe de entradas a coluna alvo39 inputs = inputs.drop('strategy_n', axis = 'columns')40 #Retirando do Dataframe as colunas que são do tipo labels e que não agregam na árvore de decisão que usaremos a seguir41 inputs_n = inputs.drop(['id','name','type','god'], axis='columns')42 #importando a biblioteca de árvore43 from sklearn import tree44 #Criando uma variável modelo de árvore de decisão45 model = tree.DecisionTreeClassifier()46 #Ensinando o modelo a partir dos resultados47 model.fit(inputs_n.values, target)48 #model.score(inputs_n,target) # como os dados de entrada são os mesmos do de validação, o score é 149 #Cria um DF com os dados de test50 df_test = pd.read_csv(self.arqCSVTest)51 52 #Cria colunas inteiras a partir das colunas labels53 df_test['type_n'] = le_type.fit_transform(df_test['type'])54 df_test['god_n'] = le_god.fit_transform(df_test['god'])55 #Cria o DF result com a coluna strategy preenchida a partir dos dados aprendidos no modelo56 df_result = df_test57 df_result['strategy'] = df_test['name']58 alist = []59 for indice, linha in df_result.iterrows(): 60 card = [linha.mana, linha.attack, linha.health, le_type.transform([linha.type])[0], le_god.transform([linha.god])[0]]61 prev = le_strategy.inverse_transform(model.predict([card]))[0]62 alist.append(prev)63 df_result['strategy'] = alist64 #Cria um novo DF result sem as colunas auxiliares criadas dos labels type e god65 df_result_f = df_result.drop(['type_n','god_n'], axis = 'columns')66 #Cria um novo DF dos dados de train sem as colunas auxiliares criadas dos labels type e god67 df_f = self.df.drop(['type_n','god_n', 'strategy_n'], axis = 'columns')68 #Cria um novo DF com os dados dos dois DF, os dos dados de train e dos dados de test69 self.df_final = pd.concat([df_f, df_result_f])70 #Exporta o DF criado para um arquivo CSV 71 self.df_final.to_csv(self.arqCSVResult, encoding = 'utf-8', index=False)72 73def main(args):74 train = Train(args[1], args[2], args[3])75 76 train.fit()77 return 078if __name__ == '__main__':...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!