How to use a_max method in pandera

Best Python code snippet using pandera_python

shermann.py

Source:shermann.py Github

copy

Full Screen

1#!/usr/bin/env python2.72import numpy as np3from numpy import linalg4import time5method = 'HybridUCB'6class HybridUCB:7 def __init__(self):8 self.article_features = {}9 # upper bound coefficient10 self.alpha = 3 #1 + np.sqrt(np.log(2/delta)/2)11 r1 = 20.12 r0 = -0.513 self.r = (r0, r1)14 # dimension of user features = d15 self.d = 516 # dimension of article features = k17 self.k = self.d*self.d18 # A0 : matrix to compute hybrid part, k*k19 self.A0 = np.identity(self.k)20 self.A0I = np.identity(self.k)21 # b0 : vector to compute hybrid part, k22 self.b0 = np.zeros((self.k, 1))23 # Aa : collection of matrix to compute disjoint part for each article a, d*d24 self.Aa = {}25 # AaI : collection of matrix to compute disjoint part for each article a, d*d26 self.AaI = {}27 # Ba : collection of matrix to compute hybrid part, d*k28 self.Ba = {}29 # BaT : collection of matrix to compute hybrid part, d*k30 self.BaT = {}31 # ba : collection of vectors to compute disjoin part, d*132 self.ba = {}33 self.updateCycle = 1034 self.lastUp = 035 # other dicts to speed up computation36 self.AaIba = {}37 self.AaIBa = {}38 self.BaTAaI = {}39 self.theta = {}40 #additional stuff that is computated in the update function instead of recommend41 self.A0IBaTAaI = {}42 self.A0IBaA0IBaTAaI = {}43 self.lastart = []44 self.beta = np.zeros((self.k, 1))45 self.index = {}46 self.a_max = 047 self.z = None48 self.zT = None49 self.xaT = None50 self.xa = None51 # Evaluator will call this function and pass the article features.52 # Check evaluator.py description for details.53 def set_articles(self, art):54 # init collection of matrix/vector Aa, Ba, ba55 i = 056 art_len = len(art)57 self.art = art58 self.article_features = np.zeros((art_len, 1, self.d))59 self.Aa = np.zeros((art_len, self.d, self.d))60 self.AaI = np.zeros((art_len, self.d, self.d))61 self.Ba = np.zeros((art_len, self.d, self.k))62 self.BaT = np.zeros((art_len, self.k, self.d))63 self.ba = np.zeros((art_len, self.d, 1))64 self.AaIba = np.zeros((art_len, self.d, 1))65 self.AaIBa = np.zeros((art_len, self.d, self.k))66 self.BaTAaI = np.zeros((art_len, self.k, self.d))67 self.A0IBaTAaI = np.zeros((art_len, self.k, self.d))68 self.A0IBaA0IBaTAaI = np.zeros((art_len, self.d, self.d))69 self.theta = np.zeros((art_len, self.d, 1))70 for key in art:71 self.index[key] = i72 self.article_features[i] = art[key]73 self.Aa[i] = np.identity(self.d)74 self.AaI[i] = np.identity(self.d)75 self.Ba[i] = np.zeros((self.d, self.k))76 self.BaT[i] = np.zeros((self.k, self.d))77 self.ba[i] = np.zeros((self.d, 1))78 self.AaIba[i] = np.zeros((self.d, 1))79 self.AaIBa[i] = np.zeros((self.d, self.k))80 self.BaTAaI[i] = np.zeros((self.k, self.d))81 self.A0IBaTAaI[i] = np.zeros((self.k, self.d))82 self.A0IBaA0IBaTAaI[i] = np.zeros((self.d, self.d))83 self.theta[i] = np.zeros((self.d, 1))84 i += 185 # This function will be called by the evaluator.86 # Check task description for details.87 def update(self, reward):88 global ttime89 #print reward90 if reward == -1:91 pass92 else:93 r = self.r[reward]94 self.A0 += np.dot(self.BaTAaI[self.a_max], self.Ba[self.a_max])95 self.b0 += np.dot(self.BaTAaI[self.a_max], self.ba[self.a_max])96 self.Aa[self.a_max] += np.dot(self.xa, self.xaT)97 B = np.divide(98 np.dot(np.dot(self.AaI[self.a_max], np.dot(self.xa, self.xaT)), self.AaI[self.a_max]),99 (1 + np.dot(np.dot(self.xaT, self.AaI[self.a_max]), self.xa)))100 self.AaI[self.a_max] = self.AaI[self.a_max] - B101 self.Ba[self.a_max] += np.dot(self.xa, self.zT)102 self.BaT[self.a_max] = np.transpose(self.Ba[self.a_max])103 self.ba[self.a_max] += r * self.xa104 self.AaIba[self.a_max] = np.dot(self.AaI[self.a_max], self.ba[self.a_max])105 self.AaIBa[self.a_max] = np.dot(self.AaI[self.a_max], self.Ba[self.a_max])106 self.BaTAaI[self.a_max] = np.dot(self.BaT[self.a_max], self.AaI[self.a_max])107 self.A0 += np.dot(self.z, self.zT) - np.dot(self.BaTAaI[self.a_max], self.Ba[self.a_max])108 self.b0 += r * self.z - np.dot(self.BaT[self.a_max], np.dot(self.AaI[self.a_max], self.ba[self.a_max]))109 #change to LSG?110 self.A0I = linalg.inv(self.A0)111 self.beta = np.dot(self.A0I, self.b0)112 #self.beta = linalg.solve(self.A0, self.b0)113 # if not np.array_equal(beta1, self.beta.all):114 # print115 self.A0IBaTAaI[self.a_max] = np.dot(self.A0I,self.BaTAaI[self.a_max])116 self.A0IBaA0IBaTAaI[self.a_max] = np.dot(self.AaIBa[self.a_max],self.A0IBaTAaI[self.a_max])117 #do this here !!!!!118 #self.lastUp = self.lastUp + 1119 #if self.lastUp > self.updateCycle:120 #self.matrixUpdate()121 #self.lastUp = 0122 123 self.theta = self.AaIba - np.dot(self.AaIBa, self.beta)#self.AaI[article].dot(self.ba[article] - self.Ba[article].dot(self.beta))124 self.lastart = []125 def matrixUpdate(self):126 #global ttime127 #ttime = ttime - time.time()128 for ind in range(self.BaTAaI.shape[0]):129 #print self.A0IBaTAaI130 self.A0IBaTAaI[ind] = np.dot(self.A0I,self.BaTAaI[ind])131 self.A0IBaA0IBaTAaI[ind] = np.dot(self.AaIBa[ind],self.A0IBaTAaI[ind])132 #ttime = ttime + time.time()133 # This function will be called by the evaluator.134 # Check task description for details.135 # Use vectorized code to increase speed136 def recommend(self, timestamp, user_features, articles):137 global ttime138 article_len = len(articles)139 # za : feature of current user/article combination, k*1140 self.xaT = np.array([user_features])141 self.xa = np.transpose(self.xaT)142 # recommend using hybrid ucb143 # fast vectorized for loops144 index = [self.index[article] for article in articles]145 ttime = ttime - time.time()146 if cmp(self.lastart,index)!=0:147 self.article_features_tmp = self.article_features[index]148 #preprocess matrices149 self.preA0IBaA0IBaTAaI=self.A0IBaA0IBaTAaI[index]150 self.preAaI = self.AaI[index]151 self.preA0IBaTAaI = self.A0IBaTAaI[index]152 self.preTheta = self.theta[index]153 self.lastart = index154 155 ttime = ttime + time.time()156 zaT_tmp = np.einsum('i,j', self.article_features_tmp.reshape(-1), user_features).reshape(article_len, 1, self.k)157 #print zaT_tmp.shape158 za_tmp = np.transpose(zaT_tmp, (0,2,1))#np.transpose(zaT_tmp,(0,2,1))159 A0IBaTAaIxa_tmp = np.dot(self.preA0IBaTAaI, self.xa)160 #looks good :)161 #print A0IBaTAaIxa_tmp1-A0IBaTAaIxa_tmp162 A0Iza_tmp = np.transpose(np.dot(zaT_tmp, np.transpose(self.A0I)), (0,2,1)) # (20, 36, 1)163 A0Iza_diff_2A0IBaTAaIxa_tmp = A0Iza_tmp - 2*A0IBaTAaIxa_tmp164 sa_1_tmp = np.sum(za_tmp.reshape(article_len,self.k,1,1)*A0Iza_diff_2A0IBaTAaIxa_tmp.reshape(article_len, self.k,1,1),-3)165 #ttime = ttime - time.time()166 AaIxa_add_AaIBaA0IBaTAaIxa_tmp = np.dot(self.preAaI, self.xa) + np.dot(self.preA0IBaA0IBaTAaI,self.xa)167 #ttime = ttime + time.time()168 #print AaIxa_add_AaIBaA0IBaTAaIxa_tmp - AaIxa_add_AaIBaA0IBaTAaIxa_tmp1169 sa_2_tmp = np.transpose(np.dot(np.transpose(AaIxa_add_AaIBaA0IBaTAaIxa_tmp,(0,2,1)),self.xa),(0,2,1))170 sa_tmp = sa_1_tmp + sa_2_tmp171 xaTtheta_tmp = np.transpose(np.dot(np.transpose(self.preTheta,(0,2,1)),self.xa),(0,2,1))172 max_index = np.argmax(np.dot(zaT_tmp, self.beta) + xaTtheta_tmp + self.alpha * np.sqrt(sa_tmp))173 self.z = za_tmp[max_index]174 self.zT = zaT_tmp[max_index]175 art_max = index[max_index]176 # article index with largest UCB177 # global a_max, entries178 self.a_max = art_max179 # return np.random.choice(articles)180 return articles[max_index]181algorithms = {182 'HybridUCB': HybridUCB()183}184algorithm = algorithms[method]185set_articles = algorithm.set_articles186update = algorithm.update187ttime = 0...

Full Screen

Full Screen

example.py

Source:example.py Github

copy

Full Screen

1#!/usr/bin/env python2.72import numpy as np3from numpy import linalg4method = 'HybridUCB'5combcut = 06artcut = 07usercut = 08class HybridUCB:9 def __init__(self):10 self.article_features = {}11 # upper bound coefficient12 self.alpha = 3 #1 + np.sqrt(np.log(2/delta)/2)13 r1 = 20.14 r0 = -0.515 self.r = (r0, r1)16 # dimension of user features = d17 self.d = 618 # dimension of article features = k19 self.k = self.d*self.d-combcut20 print self.k21 #select subset of features22 ind = np.arange(self.d*self.d)23 np.random.shuffle(ind)24 self.scols = ind[:self.k]25 print self.scols26 # A0 : matrix to compute hybrid part, k*k27 self.A0 = np.identity(self.k)28 self.A0I = np.identity(self.k)29 # b0 : vector to compute hybrid part, k30 self.b0 = np.zeros((self.k, 1))31 # Aa : collection of matrix to compute disjoint part for each article a, d*d32 self.Aa = {}33 # AaI : collection of matrix to compute disjoint part for each article a, d*d34 self.AaI = {}35 # Ba : collection of matrix to compute hybrid part, d*k36 self.Ba = {}37 # BaT : collection of matrix to compute hybrid part, d*k38 self.BaT = {}39 # ba : collection of vectors to compute disjoin part, d*140 self.ba = {}41 # other dicts to speed up computation42 self.AaIba = {}43 self.AaIBa = {}44 self.BaTAaI = {}45 self.theta = {}46 self.beta = np.zeros((self.k, 1))47 self.index = {}48 self.a_max = 049 self.z = None50 self.zT = None51 self.xaT = None52 self.xa = None53 # Evaluator will call this function and pass the article features.54 # Check evaluator.py description for details.55 def set_articles(self, art):56 # init collection of matrix/vector Aa, Ba, ba57 i = 058 art_len = len(art)59 self.article_features = np.zeros((art_len, 1, self.d))60 self.Aa = np.zeros((art_len, self.d, self.d))61 self.AaI = np.zeros((art_len, self.d, self.d))62 self.Ba = np.zeros((art_len, self.d, self.k))63 self.BaT = np.zeros((art_len, self.k, self.d))64 self.ba = np.zeros((art_len, self.d, 1))65 self.AaIba = np.zeros((art_len, self.d, 1))66 self.AaIBa = np.zeros((art_len, self.d, self.k))67 self.BaTAaI = np.zeros((art_len, self.k, self.d))68 self.theta = np.zeros((art_len, self.d, 1))69 for key in art:70 self.index[key] = i71 self.article_features[i] = art[key]72 self.Aa[i] = np.identity(self.d)73 self.AaI[i] = np.identity(self.d)74 self.Ba[i] = np.zeros((self.d, self.k))75 self.BaT[i] = np.zeros((self.k, self.d))76 self.ba[i] = np.zeros((self.d, 1))77 self.AaIba[i] = np.zeros((self.d, 1))78 self.AaIBa[i] = np.zeros((self.d, self.k))79 self.BaTAaI[i] = np.zeros((self.k, self.d))80 self.theta[i] = np.zeros((self.d, 1))81 i += 182 # This function will be called by the evaluator.83 # Check task description for details.84 def update(self, reward):85 #print reward86 if reward == -1:87 pass88 else:89 r = self.r[reward]90 self.A0 += np.dot(self.BaTAaI[self.a_max], self.Ba[self.a_max])91 self.b0 += np.dot(self.BaTAaI[self.a_max], self.ba[self.a_max])92 self.Aa[self.a_max] += np.dot(self.xa, self.xaT)93 B = np.divide(94 np.dot(np.dot(self.AaI[self.a_max], np.dot(self.xa, self.xaT)), self.AaI[self.a_max]),95 (1 + np.dot(np.dot(self.xaT,self.AaI[self.a_max]),self.xa)))96 self.AaI[self.a_max] = self.AaI[self.a_max] - B97 #A = linalg.inv(self.Aa[self.a_max])98 self.Ba[self.a_max] += np.dot(self.xa, self.zT)99 self.BaT[self.a_max] = np.transpose(self.Ba[self.a_max])100 self.ba[self.a_max] += r * self.xa101 self.AaIba[self.a_max] = np.dot(self.AaI[self.a_max], self.ba[self.a_max])102 self.AaIBa[self.a_max] = np.dot(self.AaI[self.a_max], self.Ba[self.a_max])103 self.BaTAaI[self.a_max] = np.dot(self.BaT[self.a_max], self.AaI[self.a_max])104 self.A0 += np.dot(self.z, self.zT) - np.dot(self.BaTAaI[self.a_max], self.Ba[self.a_max])105 self.b0 += r * self.z - np.dot(self.BaT[self.a_max], np.dot(self.AaI[self.a_max], self.ba[self.a_max]))106 self.A0I = linalg.inv(self.A0)107 self.beta = np.dot(self.A0I, self.b0)108 self.theta = self.AaIba - np.dot(self.AaIBa, self.beta)#self.AaI[article].dot(self.ba[article] - self.Ba[article].dot(self.beta))109 # This function will be called by the evaluator.110 # Check task description for details.111 # Use vectorized code to increase speed112 def recommend(self, timestamp, user_features, articles):113 article_len = len(articles)114 # za : feature of current user/article combination, k*1115 self.xaT = np.array([user_features])116 self.xa = np.transpose(self.xaT)117 # recommend using hybrid ucb118 # fast vectorized for loops119 index = [self.index[article] for article in articles]120 article_features_tmp = self.article_features[index]121 #zaT_tmp = np.einsum('i,j', article_features_tmp.reshape(-1), user_features).reshape(article_len, 1, self.k)122 #use different features123 #print "test"124 #print article_features_tmp.shape125 #print self.scols126 zaT_tmp = np.einsum('i,j', article_features_tmp.reshape(-1), user_features).reshape(article_len, 1, self.d*self.d)[:,:,self.scols]127 #print zaT_tmp.shape128 za_tmp = np.transpose(zaT_tmp, (0,2,1))#np.transpose(zaT_tmp,(0,2,1))129 #np.dot(self.A0I, np.dot(BaTAaI_tmp, self.xa)) (20, 36, 1)130 A0IBaTAaIxa_tmp = np.transpose(np.dot(np.transpose(np.dot(self.BaTAaI[index], self.xa), (0,2,1)), np.transpose(self.A0I)), (0,2,1))131 A0Iza_tmp = np.transpose(np.dot(zaT_tmp, np.transpose(self.A0I)), (0,2,1)) # (20, 36, 1)132 A0Iza_diff_2A0IBaTAaIxa_tmp = A0Iza_tmp - 2*A0IBaTAaIxa_tmp133 # np.dot(zaT_tmp, A0Iza_diff_2A0IBaTAaIxa_tmp), (20, 1, 1)134 sa_1_tmp = np.sum(za_tmp.reshape(article_len,self.k,1,1)*A0Iza_diff_2A0IBaTAaIxa_tmp.reshape(article_len, self.k,1,1),-3)135 # np.dot(AaIBa_tmp, A0IBaTAaIxa_tmp)136 AaIxa_add_AaIBaA0IBaTAaIxa_tmp = np.dot(self.AaI[index], self.xa) + np.sum(np.transpose(self.AaIBa[index], (0,2,1)).reshape(article_len, self.k,self.d,1)*A0IBaTAaIxa_tmp.reshape(article_len,self.k,1,1),-3)137 sa_2_tmp = np.transpose(np.dot(np.transpose(AaIxa_add_AaIBaA0IBaTAaIxa_tmp,(0,2,1)),self.xa),(0,2,1))138 sa_tmp = sa_1_tmp + sa_2_tmp139 # np.dot(self.xaT, self.theta[article])140 xaTtheta_tmp = np.transpose(np.dot(np.transpose(self.theta[index],(0,2,1)),self.xa),(0,2,1))141 max_index = np.argmax(np.dot(zaT_tmp, self.beta) + xaTtheta_tmp + self.alpha * np.sqrt(sa_tmp))142 self.z = za_tmp[max_index]143 self.zT = zaT_tmp[max_index]144 art_max = index[max_index]145 # article index with largest UCB146 # global a_max, entries147 self.a_max = art_max148 # return np.random.choice(articles)149 return articles[max_index]150algorithms = {151 'HybridUCB': HybridUCB()152}153algorithm = algorithms[method]154set_articles = algorithm.set_articles155update = algorithm.update...

Full Screen

Full Screen

shermannold.py

Source:shermannold.py Github

copy

Full Screen

1#!/usr/bin/env python2.72import numpy as np3from numpy import linalg4method = 'HybridUCB'5class HybridUCB:6 def __init__(self):7 self.article_features = {}8 # upper bound coefficient9 self.alpha = 3 #1 + np.sqrt(np.log(2/delta)/2)10 r1 = 20.11 r0 = -0.512 self.r = (r0, r1)13 # dimension of user features = d14 self.d = 615 # dimension of article features = k16 self.k = self.d*self.d17 # A0 : matrix to compute hybrid part, k*k18 self.A0 = np.identity(self.k)19 self.A0I = np.identity(self.k)20 # b0 : vector to compute hybrid part, k21 self.b0 = np.zeros((self.k, 1))22 # Aa : collection of matrix to compute disjoint part for each article a, d*d23 self.Aa = {}24 # AaI : collection of matrix to compute disjoint part for each article a, d*d25 self.AaI = {}26 # Ba : collection of matrix to compute hybrid part, d*k27 self.Ba = {}28 # BaT : collection of matrix to compute hybrid part, d*k29 self.BaT = {}30 # ba : collection of vectors to compute disjoin part, d*131 self.ba = {}32 # other dicts to speed up computation33 self.AaIba = {}34 self.AaIBa = {}35 self.BaTAaI = {}36 self.theta = {}37 self.beta = np.zeros((self.k, 1))38 self.index = {}39 self.a_max = 040 self.z = None41 self.zT = None42 self.xaT = None43 self.xa = None44 # Evaluator will call this function and pass the article features.45 # Check evaluator.py description for details.46 def set_articles(self, art):47 # init collection of matrix/vector Aa, Ba, ba48 i = 049 art_len = len(art)50 self.article_features = np.zeros((art_len, 1, self.d))51 self.Aa = np.zeros((art_len, self.d, self.d))52 self.AaI = np.zeros((art_len, self.d, self.d))53 self.Ba = np.zeros((art_len, self.d, self.k))54 self.BaT = np.zeros((art_len, self.k, self.d))55 self.ba = np.zeros((art_len, self.d, 1))56 self.AaIba = np.zeros((art_len, self.d, 1))57 self.AaIBa = np.zeros((art_len, self.d, self.k))58 self.BaTAaI = np.zeros((art_len, self.k, self.d))59 self.theta = np.zeros((art_len, self.d, 1))60 for key in art:61 self.index[key] = i62 self.article_features[i] = art[key]63 self.Aa[i] = np.identity(self.d)64 self.AaI[i] = np.identity(self.d)65 self.Ba[i] = np.zeros((self.d, self.k))66 self.BaT[i] = np.zeros((self.k, self.d))67 self.ba[i] = np.zeros((self.d, 1))68 self.AaIba[i] = np.zeros((self.d, 1))69 self.AaIBa[i] = np.zeros((self.d, self.k))70 self.BaTAaI[i] = np.zeros((self.k, self.d))71 self.theta[i] = np.zeros((self.d, 1))72 i += 173 # This function will be called by the evaluator.74 # Check task description for details.75 def update(self, reward):76 #print reward77 if reward == -1:78 pass79 else:80 r = self.r[reward]81 self.A0 += np.dot(self.BaTAaI[self.a_max], self.Ba[self.a_max])82 self.b0 += np.dot(self.BaTAaI[self.a_max], self.ba[self.a_max])83 self.Aa[self.a_max] += np.dot(self.xa, self.xaT)84 B = np.divide(85 np.dot(np.dot(self.AaI[self.a_max], np.dot(self.xa, self.xaT)), self.AaI[self.a_max]),86 (1 + np.dot(np.dot(self.xaT, self.AaI[self.a_max]), self.xa)))87 self.AaI[self.a_max] = self.AaI[self.a_max] - B88 self.Ba[self.a_max] += np.dot(self.xa, self.zT)89 self.BaT[self.a_max] = np.transpose(self.Ba[self.a_max])90 self.ba[self.a_max] += r * self.xa91 self.AaIba[self.a_max] = np.dot(self.AaI[self.a_max], self.ba[self.a_max])92 self.AaIBa[self.a_max] = np.dot(self.AaI[self.a_max], self.Ba[self.a_max])93 self.BaTAaI[self.a_max] = np.dot(self.BaT[self.a_max], self.AaI[self.a_max])94 self.A0 += np.dot(self.z, self.zT) - np.dot(self.BaTAaI[self.a_max], self.Ba[self.a_max])95 self.b0 += r * self.z - np.dot(self.BaT[self.a_max], np.dot(self.AaI[self.a_max], self.ba[self.a_max]))96 #change to LSG?97 self.A0I = linalg.inv(self.A0)98 self.beta = np.dot(self.A0I, self.b0)99 #self.beta = linalg.solve(self.A0, self.b0)100 # if not np.array_equal(beta1, self.beta.all):101 # print102 self.theta = self.AaIba - np.dot(self.AaIBa, self.beta)#self.AaI[article].dot(self.ba[article] - self.Ba[article].dot(self.beta))103 # This function will be called by the evaluator.104 # Check task description for details.105 # Use vectorized code to increase speed106 def recommend(self, timestamp, user_features, articles):107 article_len = len(articles)108 # za : feature of current user/article combination, k*1109 self.xaT = np.array([user_features])110 self.xa = np.transpose(self.xaT)111 # recommend using hybrid ucb112 # fast vectorized for loops113 index = [self.index[article] for article in articles]114 article_features_tmp = self.article_features[index]115 zaT_tmp = np.einsum('i,j', article_features_tmp.reshape(-1), user_features).reshape(article_len, 1, self.k)116 za_tmp = np.transpose(zaT_tmp, (0,2,1))#np.transpose(zaT_tmp,(0,2,1))117 #np.dot(self.A0I, np.dot(BaTAaI_tmp, self.xa)) (20, 36, 1)118 A0IBaTAaIxa_tmp = np.transpose(np.dot(np.transpose(np.dot(self.BaTAaI[index], self.xa), (0,2,1)), np.transpose(self.A0I)), (0,2,1))119 A0Iza_tmp = np.transpose(np.dot(zaT_tmp, np.transpose(self.A0I)), (0,2,1)) # (20, 36, 1)120 A0Iza_diff_2A0IBaTAaIxa_tmp = A0Iza_tmp - 2*A0IBaTAaIxa_tmp121 # np.dot(zaT_tmp, A0Iza_diff_2A0IBaTAaIxa_tmp), (20, 1, 1)122 sa_1_tmp = np.sum(za_tmp.reshape(article_len,self.k,1,1)*A0Iza_diff_2A0IBaTAaIxa_tmp.reshape(article_len, self.k,1,1),-3)123 # np.dot(AaIBa_tmp, A0IBaTAaIxa_tmp)124 AaIxa_add_AaIBaA0IBaTAaIxa_tmp = np.dot(self.AaI[index], self.xa) + np.sum(np.transpose(self.AaIBa[index], (0,2,1)).reshape(article_len, self.k,self.d,1)*A0IBaTAaIxa_tmp.reshape(article_len,self.k,1,1),-3)125 sa_2_tmp = np.transpose(np.dot(np.transpose(AaIxa_add_AaIBaA0IBaTAaIxa_tmp,(0,2,1)),self.xa),(0,2,1))126 sa_tmp = sa_1_tmp + sa_2_tmp127 # np.dot(self.xaT, self.thea[article])128 xaTtheta_tmp = np.transpose(np.dot(np.transpose(self.theta[index],(0,2,1)),self.xa),(0,2,1))129 max_index = np.argmax(np.dot(zaT_tmp, self.beta) + xaTtheta_tmp + self.alpha * np.sqrt(sa_tmp))130 self.z = za_tmp[max_index]131 self.zT = zaT_tmp[max_index]132 art_max = index[max_index]133 # article index with largest UCB134 # global a_max, entries135 self.a_max = art_max136 # return np.random.choice(articles)137 return articles[max_index]138algorithms = {139 'HybridUCB': HybridUCB()140}141algorithm = algorithms[method]142set_articles = algorithm.set_articles143update = algorithm.update...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run pandera automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful