Best Python code snippet using pandera_python
hypotheses.py
Source:hypotheses.py
...144 @property145 def is_one_sample_test(self):146 """Return True if hypothesis is a one-sample test."""147 return len(self.samples) <= 1148 def _prepare_series_input(149 self,150 df_or_series: Union[pd.Series, pd.DataFrame],151 column: Optional[str] = None,152 ) -> SeriesCheckObj:153 """Prepare Series input for Hypothesis check."""154 self.groups = self.samples155 return super()._prepare_series_input(df_or_series, column)156 def _prepare_dataframe_input(157 self, dataframe: pd.DataFrame158 ) -> DataFrameCheckObj:159 """Prepare input for DataFrameSchema Hypothesis check."""160 if self.groupby is not None:161 raise errors.SchemaDefinitionError(162 "`groupby` cannot be used for DataFrameSchema checks, must "163 "be used in Column checks."164 )165 if self.is_one_sample_test:166 return dataframe[self.samples[0]]167 check_obj = [(sample, dataframe[sample]) for sample in self.samples]168 return self._format_groupby_input(check_obj, self.samples)169 def _relationships(self, relationship: Union[str, Callable]):...
checks.py
Source:checks.py
...21 self._check_fn = check_fn22 self._check_kwargs = check_kwargs23 self.error = error24 self.name = name25 def _prepare_series_input(26 self,27 samples: Union[pd.Series, np.ndarray, List],28 ) -> pd.Series:29 """Prepare input for checking.30 Args:31 samples (Union[pd.Series, np.ndarray, List]): Array32 with samples.33 Returns:34 pd.Series: Samples converted to pandas Series.35 """36 if isinstance(samples, pd.Series):37 return samples38 elif isinstance(samples, pd.DataFrame):39 return samples40 elif isinstance(samples, np.ndarray):41 return pd.Series(samples)42 elif isinstance(samples, list):43 return pd.Series(samples)44 raise TypeError("Type %s not a recognized argument.")45 def __call__(46 self,47 samples: Union[np.ndarray, pd.Series, pd.DataFrame, List],48 ) -> Tuple[bool, pd.Series]:49 """Validate samples given a check method.50 Arguments:51 samples (Union[np.ndarray, pd.Series, pd.DataFrame, List]):52 Array with samples from methods.53 Returns:54 Tuple[bool, pd.Series]: A tuple indicating if a warning has55 to be called for a given samples.56 """57 # prepare check object58 check_obj = self._prepare_series_input(samples)59 # apply check function to check object60 check_fn = partial(self._check_fn, **self._check_kwargs)61 # vectorized check function case62 check_output = check_obj.apply(check_fn)63 # warning cases only apply when the check function returns a boolean64 # series that matches the shape and index of the check_obj65 if (66 isinstance(check_obj, dict) or67 isinstance(check_output, bool) or68 not isinstance(check_output, (pd.Series, pd.DataFrame)) or69 check_obj.shape[0] != check_output.shape[0] or70 (check_obj.index != check_output.index).all()71 ):72 warning_cases = None...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!