How to use my_function method in Nose

Best Python code snippet using nose

graph_callable_test.py

Source: graph_callable_test.py Github

copy

Full Screen

...28class GraphCallableTest(test.TestCase):29 def testBasic(self):30 @graph_callable.graph_callable(31 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.float32)])32 def my_function(x):33 v = variable_scope.get_variable(34 "v", initializer=init_ops.zeros_initializer(), shape=())35 return v + x36 self.assertEqual(37 2, my_function(constant_op.constant(2, dtype=dtypes.float32)).numpy())38 my_function.variables[0].assign(1.)39 self.assertEqual(40 3, my_function(constant_op.constant(2, dtype=dtypes.float32)).numpy())41 def testFunctionWithoutReturnValue(self):42 @graph_callable.graph_callable(43 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.float32)])44 def my_function(x):45 v = variable_scope.get_variable(46 "v", initializer=init_ops.zeros_initializer(), shape=())47 v.assign(x)48 my_function(constant_op.constant(4, dtype=dtypes.float32))49 self.assertAllEqual(4, my_function.variables[0].read_value())50 def testFunctionWithoutReturnValueAndArgs(self):51 @graph_callable.graph_callable([])52 def my_function():53 v = variable_scope.get_variable(54 "v", initializer=init_ops.zeros_initializer(), shape=())55 v.assign(4)56 my_function()57 self.assertAllEqual(4, my_function.variables[0].read_value())58 def testVariableAPI(self):59 @graph_callable.graph_callable(60 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.float32)])61 def my_function(x):62 v = variable_scope.get_variable(63 "v", initializer=init_ops.zeros_initializer(), shape=())64 return v.read_value() + x65 self.assertEqual(66 2, my_function(constant_op.constant(2, dtype=dtypes.float32)).numpy())67 my_function.variables[0].assign(1.)68 self.assertEqual(69 3, my_function(constant_op.constant(2, dtype=dtypes.float32)).numpy())70 def testTensorShape(self):71 @graph_callable.graph_callable(72 [graph_callable.ShapeAndDtype(shape=(1), dtype=dtypes.float32)])73 def my_function(x):74 _ = x.get_shape()75 v = variable_scope.get_variable(76 "v", initializer=init_ops.zeros_initializer(), shape=[x.shape[0]])77 self.assertEqual(v.shape[0], x.shape[0])78 return v + x79 self.assertEqual([2.],80 my_function(81 constant_op.constant([2.],82 dtype=dtypes.float32)).numpy())83 def testUpdatesAreOrdered(self):84 @graph_callable.graph_callable(85 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.float32)])86 def my_function(x):87 v = variable_scope.get_variable(88 "v", initializer=init_ops.zeros_initializer(), shape=())89 v.assign(x + 1)90 v.assign(v * x)91 return v.read_value()92 self.assertAllEqual(my_function(constant_op.constant(2.0)), 6.0)93 def testEmptyInitializer(self):94 @graph_callable.graph_callable(95 [graph_callable.ShapeAndDtype(shape=(1), dtype=dtypes.float32)])96 def my_function(x):97 v = variable_scope.get_variable("v", shape=[1])98 return x + 0 * v99 self.assertEqual([2.],100 my_function(101 constant_op.constant([2.],102 dtype=dtypes.float32)).numpy())103 def testMismatchingNumArgs(self):104 # pylint: disable=anomalous-backslash-in-string105 with self.assertRaisesRegexp(TypeError,106 "The number of arguments accepted by the "107 "decorated function `my_function` \(2\) must "108 "match the number of ShapeAndDtype objects "109 "passed to the graph_callable\(\) decorator "110 "\(1\)."):111 @graph_callable.graph_callable([112 graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.float32)])113 def my_function(x, y): # pylint: disable=unused-variable114 return x + y115 # pylint: enable=anomalous-backslash-in-string116 def testPureFunction(self):117 @graph_callable.graph_callable(118 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.int32)])119 def f(x):120 return math_ops.add(x, constant_op.constant(3))121 self.assertAllEqual(5, f(constant_op.constant(2)))122 def testNestedFunction(self):123 # TensorFlow function (which is what would be used in TensorFlow graph124 # construction).125 @function.Defun(dtypes.int32, dtypes.int32)126 def add(a, b):127 return math_ops.add(a, b)128 # A graph_callable that will invoke the TensorFlow function.129 @graph_callable.graph_callable(130 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.int32)])131 def add_one(x):132 return add(x, 1)133 self.assertAllEqual(3, add_one(constant_op.constant(2)))134 # TODO(ashankar): Make this work.135 # The problem is that the two graph_callables (for add_one and add_two)136 # are both trying to register the FunctionDef corresponding to "add".137 def DISABLED_testRepeatedUseOfSubFunction(self):138 @function.Defun(dtypes.int32, dtypes.int32)139 def add(a, b):140 return math_ops.add(a, b)141 @graph_callable.graph_callable(142 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.int32)])143 def add_one(x):144 return add(x, 1)145 @graph_callable.graph_callable(146 [graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.int32)])147 def add_two(x):148 return add(x, 2)149 two = constant_op.constant(2)150 self.assertAllEqual(3, add_one(two))151 self.assertAllEqual(4, add_two(two))152 def testNestedSequenceInputs(self):153 sd = graph_callable.ShapeAndDtype(shape=(), dtype=dtypes.float32)154 @graph_callable.graph_callable([[sd, tuple([sd, sd]), sd]])155 def my_op(inputs):156 a, b, c = inputs157 e, f = b158 v = variable_scope.get_variable(159 "my_v", initializer=init_ops.zeros_initializer(), shape=())160 return [a + a + v, tuple([e + e, f + f]), c + c], a + e + f + c + v161 inputs = [constant_op.constant(1.),162 [constant_op.constant(2.), constant_op.constant(3.)],163 constant_op.constant(4.)]164 ret = my_op(inputs)165 self.assertEqual(len(ret), 2.)166 self.assertAllEqual(ret[1], 10.)167 my_op.variables[0].assign(1.)168 ret = my_op(inputs)169 self.assertAllEqual(ret[1], 11.)170 def testVariableShapeIsTensorShape(self):171 @graph_callable.graph_callable([])172 def my_function():173 v = variable_scope.get_variable(174 "v", initializer=init_ops.zeros_initializer(), shape=())175 self.assertIsInstance(v.get_shape(), tensor_shape.TensorShape)176 my_function()177 def testIncorrectlyShapedInputs(self):178 @graph_callable.graph_callable(179 [graph_callable.ShapeAndDtype(shape=(3), dtype=dtypes.float32)])180 def my_function(x):181 v = variable_scope.get_variable(182 "v", initializer=init_ops.zeros_initializer(), shape=())183 return v + x184 with self.assertRaises(ValueError):185 my_function([1, 2])186 self.assertTrue(([1, 2, 3] == my_function(187 constant_op.constant([1, 2, 3], dtype=dtypes.float32)).numpy()).all())188 def testGradients(self):189 @graph_callable.graph_callable([])190 def my_function():191 v = variable_scope.get_variable(192 "v", initializer=init_ops.constant_initializer(3.), shape=())193 return v * v194 grad_fn = backprop.implicit_grad(my_function)195 grads_and_vars = list(zip(*grad_fn()))196 self.assertAllEqual(6., grads_and_vars[0][0])197if __name__ == "__main__":...

Full Screen

Full Screen

main.py

Source: main.py Github

copy

Full Screen

...6pro = df2['product_line'].tolist()7Volume = df2['volume_in_kg'].tolist()8Gross = df2['gross_sales'].tolist()9margin = df2['gm'].tolist()10def my_function(dup):11 return list(dict.fromkeys(dup))12mylist = my_function(new1)13print('Unique Customer', mylist)14def my_fun(myfun):15 return list(dict.fromkeys(myfun))16mylis = my_fun(pro)17print('Unique product', mylis)18def my_function(Vol):19 return sum(Vol)20print('Sum of Volume', my_function(Volume))21def my_function(Vol):22 return np.mean(Vol)23print('Mean of Volume', my_function(Volume))24def my_function(Vol):25 return np.median(Vol)26print('Median of Volume', my_function(Volume))27def my_function(Vol):28 return np.min(Vol)29print('Min of Volume', my_function(Volume))30def my_function(Vol):31 return np.max(Vol)32print('Max of Volume', my_function(Volume))33def my_function(Vol):34 return np.std(Vol)35print('Std of Volume', my_function(Volume))36def my_function(Vol):37 return np.var(Vol)38print('Var of Volume', my_function(Volume))39def my_function(Gs):40 return sum(Gs)41print('Sum of Sales', my_function(Gross))42def my_function(Gs):43 return np.mean(Gs)44print('Mean of Sales', my_function(Gross))45def my_function(Gs):46 return np.median(Gs)47print('Median of Sales', my_function(Gross))48def my_function(Gs):49 return np.min(Gs)50print('Min of Sales', my_function(Gross))51def my_function(Gs):52 return np.max(Gs)53print('Max of Sales', my_function(Gross))54def my_function(Gs):55 return np.std(Gs)56print('Std of Sales', my_function(Gross))57def my_function(Gs):58 return np.var(Gs)59print('Var of Sales', my_function(Gross))60def my_function(Gm):61 return sum(Gm)62print('Sum of Margin', my_function(Gross))63def my_function(Gm):64 return np.mean(Gm)65print('Mean of Margin', my_function(margin))66def my_function(Gm):67 return np.median(Gm)68print('Median of Margin', my_function(margin))69def my_function(Gm):70 return np.min(Gm)71print('Min of Margin', my_function(margin))72def my_function(Gm):73 return np.max(Gm)74print('Max of Margin', my_function(margin))75def my_function(Gm):76 return np.std(Gm)77print('Std of Margin', my_function(margin))78def my_function(Gm):79 return np.var(Gm)80print('Var of Margin', my_function(margin))81Volume = df2["gross_sales"]82Sales = df2["volume_in_kg"]83x = []84y = []85def Scatter_plot(x, y):86 plt.scatter(x, y)87 plt.xlabel('Volume')88 plt.ylabel('Sales')89 plt.grid()90 plt.show()91if __name__ == '__main__':92 x = list(Volume)93 y = list(Sales)94 Scatter_plot(x, y)...

Full Screen

Full Screen

function_ex.py

Source: function_ex.py Github

copy

Full Screen

1################# Creating a function ######################################2# def my_function():3# print("Hello from a fuction")4# ############## Calling a Function #########################################5# def my_function():6# print("Hello from a function")7# my_function()8# ############### Arguments #################################################9 10# def my_function(fname):11# print(fname + "Refsnes")12# my_function("Email")13# my_function("Tobias")14# my_function("Linus")15# ################# Parameters or Arguments? #################################16# def my_function(fname, lname):17# print(fname + " " + lname)18# my_function("Emil", "Refsnes")19# ################## Arbitrary Arguments, *args ###############################20# def my_function(*kids):21# print("The youngest child is " + kids[2])22# my_function("Emil", "Tobias", "Linus")23# #################### Keyword Argumets #########################################24# def my_function(child3, child2, child1):25# print("The youngest child is " + child3)26# my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus")27# ################### Arbitrary Keword Arguments,**Kwargs ########################28# def my_function(**kid):29# print("His last name is " + kid["lname"])30# my_function(fname = "Tobias", lname = "Refsnes")31# ################## Default Parameter Value ######################################32# def my_function(country = "Norway"):33# print("I am from " + country)34# my_function("Sweden")35# my_function("India")36# my_function()37# my_function("Brazil")38################## passing a list as an Argument #################################39# def my_function(food):40# for x in food:41# print(x)42# fruits = ["apple", "banana", "cherry"]43# my_function(fruits)44# ################# Return Values ##################################################45# def my_function(x):46# return 5 * x47# print(my_function(3))48# print(my_function(5))49# print(my_function(9))50# ############## Recursion ###############################################51# def tri_recursion(k):52# if(k > 0):53# result = k + tri_recursion(k - 1)54# print(result)55# else:56# result = 057# return result58# print("\n\nRecursion Example Results")59# tri_recursion(6)...

Full Screen

Full Screen

exceptions.py

Source: exceptions.py Github

copy

Full Screen

1# Provides numerous2# examples of different options for exception handling3def my_function(x, y):4 """5 A simple function to divide x by y6 """7 print('my_function in')8 solution = x /​ y9 print('my_function out')10 return solution11print('Starting')12print(my_function(6, 0))13try:14 print('Before my_function')15 result = my_function(6, 0)16 print(result)17 print('After my_function')18except:19 print('oops')20print('-' * 20)21try:22 print('Before my_function')23 result = my_function(6, 0)24 print(result)25 print('After my_function')26except ZeroDivisionError:27 print('oops')28print('-' * 20)29try:30 print('Before my_function')31 result = my_function(6, 0)32 print(result)33 print('After my_function')34except ZeroDivisionError as exp:35 print(exp)36 print('oops')37print('Done')38print('-' * 20)39try:40 print('Before my_function')41 result = my_function(6, 2)42 print(result)43 print('After my_function')44except ZeroDivisionError as exp:45 print(exp)46 print('oops')47else:48 print('All OK')49print('-' * 20)50try:51 print('At start')52 result = my_function(6, 2)53 print(result)54except ZeroDivisionError as e:55 print(e)56else:57 print('Everything worked OK')58finally:59 print('Always runs')60print('-' * 20)61try:62 result = my_function(6, 0)63 print(result)64except Exception as e:65 print(e)66print('-' * 20)67try:68 print('Before my_function')69 result = my_function(6, 0)70 print(result)71 print('After my_function')72except ZeroDivisionError as exp:73 print(exp)74 print('oops')75except ValueError as exp:76 print(exp)77 print('oh dear')78except:79 print('That is it')80print('-' * 20)81try:82 print('Before my_function')83 result = my_function(6, 0)84 print(result)85 print('After my_function')86finally:87 print('Always printed')88number = 089input_accepted = False90while not input_accepted:91 user_input = input('Please enter a number')92 if user_input.isnumeric():93 number = int(user_input)94 input_accepted = True95 else:96 try:97 number = float(user_input)...

Full Screen

Full Screen

Blogs

Check out the latest blogs from LambdaTest on this topic:

Eradicating Memory Leaks In Javascript

If you are wondering why your Javascript application might be suffering from severe slowdowns, poor performance, high latency or frequent crashes and all your painstaking attempts to figure out the problem were to no avail, there is a pretty good chance that your code is plagued by ‘Memory Leaks’. Memory leaks are fairly common as memory management is often neglected by developers due to the misconceptions about automatic memory allocation and release in modern high level programming languages like javascript. Failure to deal with javascript memory leaks can wreak havoc on your app’s performance and can render it unusable. The Internet is flooded with never-ending complex jargon which is often difficult to wrap your head around. So in this article, we will take a comprehensive approach to understand what javascript memory leaks are, its causes and how to spot and diagnose them easily using chrome developer tools.

38 Best CI/CD Tools For 2022

This article is a part of our Content Hub. For more in-depth resources, check out our content hub on Top CI/CD Tools Comparison.

CircleCI Vs. GitLab: Choosing The Right CI/CD Tool

He is a gifted driver. Famed for speed, reverse J, and drifts. He can breeze through the Moscow and Mexico traffic without sweating a drop. Of course, no one gets cracking on Bengaluru roads ???? But despite being so adept behind the wheels, he sometimes fails to champ the street races. Screeching tyres buzz in his head doesn’t let him sleep at times. I wish to tell him it’s not always about the driver, sometimes it’s the engine. That’s what happens when the right dev talent uses wrong, inefficient, incompatible CI/CD tools. The DevOps technologies you chose can abruptly break or smoothly accelerate your software development cycle. This article explores the Ford & the Ferrari of the CI/CD world in detail, CircleCI vs. GitLab, to help you pick the right one.

Python with Selenium 4 Tutorial: A Complete Guide with Examples

This article is a part of our Content Hub. For more in-depth resources, check out our content hub on Selenium 4 and Selenium Python Tutorial

LambdaTest Now Live With An Online Selenium Grid For Automated Cross Browser Testing

It has been around a year since we went live with the first iteration of LambdaTest Platform. We started off our product offering manual cross browser testing solutions and kept expanding our platform. We were asked many feature requests, and we implemented quite a lot of them. However, the biggest demand was to bring automation testing to the platform. Today we deliver on this feature.

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run Nose automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful