Best Python code snippet using molotov_python
test_TextureAtlas.py
Source: test_TextureAtlas.py
1# author: Zach Crabtree zacharyc@alleninstitute.org2import unittest3from aicsimageio import AICSImage4from aicsimageprocessing.textureAtlas import generate_texture_atlas5class TestTextureAtlas(unittest.TestCase):6 def test_Save(self):7 image = AICSImage("aicsimageprocessing/tests/img/img40_1.ome.tif")8 atlas = generate_texture_atlas(9 im=image,10 pack_order=[[0, 1, 2], [3], [4]],11 name="test_Sizing",12 max_edge=1024,13 )14 atlas.save("img/atlas_max")15 def test_Sizing(self):16 # arrange17 image = AICSImage("aicsimageprocessing/tests/img/img40_1.ome.tif")18 max_edge = 204819 # act20 atlas = generate_texture_atlas(21 im=image,22 name="test_Sizing",23 max_edge=max_edge,24 pack_order=[[3, 2, 1, 0], [4]],25 )26 atlas_maxedge = max(atlas.dims.atlas_width, atlas.dims.atlas_height)27 # assert28 self.assertTrue(atlas_maxedge <= max_edge)29 def test_pickChannels(self):30 packing_list = [[0], [1, 2], [3, 4]]31 # arrange32 image = AICSImage("aicsimageprocessing/tests/img/img40_1.ome.tif")33 # act34 atlas = generate_texture_atlas(35 image, name="test_pickChannels", pack_order=packing_list36 )37 # returns as dict38 # metadata = atlas.get_metadata()39 # returns list of dicts40 image_dicts = atlas.atlas_list41 output_packed = [img.metadata["channels"] for img in image_dicts]42 # assert43 self.assertEqual(packing_list, output_packed)44 def test_metadata(self):45 packing_list = [[0], [1, 2], [3, 4]]46 prefix = "atlas"47 # arrange48 image = AICSImage("aicsimageprocessing/tests/img/img40_1.ome.tif")49 # act50 atlas = generate_texture_atlas(51 image, name=prefix, pack_order=packing_list52 )53 # assert54 metadata = atlas.get_metadata()55 self.assertTrue(56 all(57 key in metadata58 for key in (59 "tile_width",60 "tile_height",61 "width",62 "height",63 "channels",64 "channel_names",65 "tiles",66 "rows",67 "cols",68 "atlas_width",69 "atlas_height",70 "images",71 )72 )73 )...
supervisedpolynomial.py
Source: supervisedpolynomial.py
1import pandas as pd 2import numpy as np3import matplotlib.pyplot as plt4from sklearn.model_selection import train_test_split5from sklearn.preprocessing import PolynomialFeatures6from sklearn.linear_model import LinearRegression7from sklearn.pipeline import Pipeline8from sklearn.model_selection import GridSearchCV910class Polynomialfit():11 12 def __init__(self, data_frame, low_degree, high_degree, x_curve_start, x_curve_stop, linspace_num=50, test_size = 0.2, random_state = None):13 self.data_frame = data_frame14 self.low_degree = low_degree15 self.high_degree = high_degree16 self.dataFrameHandler(self.data_frame)17 self.stratifiedHandler(test_size, random_state)18 self.polynomialEstimatorHandler()19 self.X_curve = self.getXCurve(x_curve_start, x_curve_stop, linspace_num)20 self.y_curve = self.getYCurve()21 22 def dataFrameHandler(self, data_frame):23 self.X = data_frame.values[:,0].reshape(-1,1)24 self.y = data_frame.values[:,1]25 26 def stratifiedHandler(self, test_sizing, rdm_state):27 bins = np.round(self.X)28 self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X,self.y,test_size = test_sizing, stratify = bins, random_state=rdm_state)29 30 def polynomialEstimatorHandler(self):31 pipeline = Pipeline((32 ("poly_features", PolynomialFeatures(degree=2)),33 ("lin_reg", LinearRegression(fit_intercept=False)),))3435 degrees = range(1,20)36 parameters = {"poly_features__degree": degrees}3738 grid_search = GridSearchCV(pipeline, parameters, cv=5)3940 # Fit GridSearchCV object41 grid_search.fit(self.X_train, self.y_train)42 43 # extract the selected model44 self.best_model = grid_search.best_estimator_45 46 def getXCurve(self, x_curve_start, x_curve_stop, linspace_num):47 return np.linspace(x_curve_start, x_curve_stop, linspace_num).reshape(-1, 1)48 49 def getYCurve(self):50 return self.best_model.predict(self.X_curve)51 52 def plot(self):53 plt.title('Polynomial fit')54 plt.xlabel('Feature')55 plt.ylabel('Target value') 56 plt.plot(self.X_train, self.y_train, 'o', label='Training Data')57 plt.plot(self.X_test, self.y_test, 'o', label='Test Data')58 plt.plot(self.X_curve, self.y_curve, 'r')59 plt.legend()
...
test_pairs.py
Source: test_pairs.py
1from math import floor2from twcli.pairs import sizing3def test_sizing():4 """Apply test cases for pairs sizing"""5 args = dict(price_left=100, price_right=25, vol_left=2, vol_right=7,6 unit_size_left=100, multiplier_left=1, multiplier_right=1)7 def msg():8 return f"Expected {exp:.2f} units, but calculated {act:.2f}."9 pair_specs = sizing.size(**args)10 exp = 11411 act = floor(pair_specs['unit_size_right'])12 assert act == exp, msg()13 args['multiplier_left'] = 10014 args['multiplier_right'] = 1015 pair_specs = sizing.size(**args)16 exp = 114217 act = floor(pair_specs['unit_size_right'])...
Check out the latest blogs from LambdaTest on this topic:
Greetings folks! With the new year finally upon us, we’re excited to announce a collection of brand-new product updates. At LambdaTest, we strive to provide you with a comprehensive test orchestration and execution platform to ensure the ultimate web and mobile experience.
In today’s tech world, where speed is the key to modern software development, we should aim to get quick feedback on the impact of any change, and that is where CI/CD comes in place.
Unit and functional testing are the prime ways of verifying the JavaScript code quality. However, a host of tools are available that can also check code before or during its execution in order to test its quality and adherence to coding standards. With each tool having its unique features and advantages contributing to its testing capabilities, you can use the tool that best suits your need for performing JavaScript testing.
Have you ever visited a website that only has plain text and images? Most probably, no. It’s because such websites do not exist now. But there was a time when websites only had plain text and images with almost no styling. For the longest time, websites did not focus on user experience. For instance, this is how eBay’s homepage looked in 1999.
It’s strange to hear someone declare, “This can’t be tested.” In reply, I contend that everything can be tested. However, one must be pleased with the outcome of testing, which might include failure, financial loss, or personal injury. Could anything be tested when a claim is made with this understanding?
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!