Best Python code snippet using molecule_python
oppty_2.py
Source:oppty_2.py
1#!/usr/bin/env python2# coding: utf-83# In[1]:4import os5import pandas as pd6import numpy as np7import matplotlib.pyplot as plt8import warnings9warnings.simplefilter("ignore")10# In[2]:11os.chdir('C:\oppty')12# In[4]:13df = pd.read_csv('oppty.csv', encoding='cp949')14# In[5]:15df.head(3)16# In[5]:17df['X_STATUS_CD'].value_counts()18# In[5]:19df.info()20# In[6]:21y_col = 'Result'22x_col = ['NAME', 'SUM_WIN_PROB','INVST_STG_CD', 'X_OPTY_TYPE','MARKET_CLASS_CD', 'CREATED', 'CLOSE_DT', 'BEF_1M_SLNG_AMT', 'CIRCUIT_NUM', 'X_CODE', 'X_TEXT','SLNG_AMT', 'PURE_PRFIT_AMT', 'MIN_CH_DT', 'MAX_CH_DT']23# In[7]:24df.describe(include='all')25# In[8]:26df.head(5)27# In[9]:28df['X_STATUS_CD'].value_counts()29# In[9]:30df['X_TEXT'].value_counts()31# In[10]:32odf = df.loc[df['X_STATUS_CD'].isin(['Win', 'Loss'])]33# In[10]:34odf['X_STATUS_CD'].value_counts()35# In[11]:36odf['Result'] = odf['X_STATUS_CD'].apply(lambda x: 1 if x=='Win' else 0)37# In[11]:38odf.head(5)39# In[12]:40odf.describe(include='all')41# In[13]:42odf['Result'].value_counts(), odf['X_STATUS_CD'].value_counts()43# In[14]:44odf.CREATED.min(), odf.CREATED.max()45# In[15]:46odf['CREATED_DATE'] = pd.to_datetime(odf.CREATED, format='%Y%m%d')47# In[16]:48odf.head(3)49# In[17]:50odf.CREATED_DATE.hist(xlabelsize=10)51# ### Train_Test Set ë¶ë¦¬52# In[18]:53train = odf.loc[odf.CREATED_DATE < '20200901' ]54test = odf.loc[odf.CREATED_DATE >= '20200901']55# In[19]:56odf.shape, train.shape, test.shape57# In[20]:58train.CREATED_DATE.hist(xlabelsize=8, figsize = (10, 5))59# In[21]:60test.CREATED_DATE.hist(xlabelsize = 8, figsize = (10, 5))61# In[22]:62simple_x_col = ['NAME', 'INVST_STG_CD', 'X_OPTY_TYPE','MARKET_CLASS_CD', 'BEF_1M_SLNG_AMT', 'CIRCUIT_NUM']63# In[23]:64odf[simple_x_col].describe(include='all')65# In[24]:66train_x = train[simple_x_col]67# In[25]:68train_x.set_index('NAME', inplace = True)69# In[26]:70train_x.head(3)71# In[27]:72train_x = pd.get_dummies(train_x)73# In[27]:74train_x.head()75# In[28]:76train_x.info()77# In[29]:78train_x.describe()79# In[30]:80train_y = train[y_col]81# In[31]:82train_y.shape, type(train_y)83# In[32]:84train_y.value_counts()85# In[33]:86##train_y[train_y.isin(['Drop', 'Proposal Reject'])] = 'Loss'87# In[34]:88from sklearn.ensemble import RandomForestClassifier89# In[35]:90classifier = RandomForestClassifier(n_estimators=500)91# In[36]:92classifier.fit(train_x, train_y)93# In[37]:94test_x = test[simple_x_col]95test_x.set_index('NAME', inplace = True)96# In[38]:97test_y = test[y_col]98#train_y[train_y.isin(['Drop', 'Proposal Reject'])] = 'Loss'99# In[39]:100test_x = pd.get_dummies(test_x)101# In[40]:102score = classifier.score(test_x, test_y)103print(score)104# In[41]:105train_x.head(3)106# ### Scaling107# In[42]:108from sklearn import preprocessing109# In[43]:110scaler = preprocessing.StandardScaler().fit(train_x)111# In[44]:112train_x_scaled = scaler.transform(train_x)113# In[45]:114test_x_scaled = scaler.transform(test_x)115# In[46]:116classifier.fit(train_x_scaled, train_y)117# In[47]:118score = classifier.score(test_x_scaled, test_y)119print(score)120# ### Feature ì¤ìì± ë³´ê¸°121# In[48]:122classifier.feature_importances_123# In[49]:124plt.barh(test_x.columns, classifier.feature_importances_)125# In[50]:126test_predict = classifier.predict(test_x_scaled)127# In[51]:128test_predict_proba = classifier.predict_proba(test_x_scaled)129# In[56]:130test_predict[:20]131# In[57]:132test_y[:20]133# In[58]:134type(test_predict), type(test_y)135# In[59]:136test_predict = pd.Series(test_predict)137# In[94]:138test_y = test_y.reset_index()139# In[95]:140test_y_compare = pd.concat([test_y, test_predict], axis = 1, ignore_index = True)141# In[118]:142test_y_compare.columns = ['ID', 'REAL', 'PREDICT']143# In[119]:144test_y_compare.describe()145# In[122]:146test_y_compare['NAME'] = test_x.index147# In[129]:148test_y_compare.set_index('NAME', inplace = True)149# In[130]:150test_verify = pd.concat([test_y_compare, test_x], axis = 1)151# In[136]:152test_verify.loc[test_verify.REAL == test_verify.PREDICT , 'MATCH'] = 'MATCH'153test_verify.loc[test_verify.REAL != test_verify.PREDICT , 'MATCH'] = 'UNMATCH'154# In[138]:155test_verify.groupby('MATCH').count()156# In[155]:157old_customer = test_verify.loc[test_verify['BEF_1M_SLNG_AMT']> 0,'MATCH'].value_counts()158new_customer = test_verify.loc[test_verify['BEF_1M_SLNG_AMT'] == 0,'MATCH'].value_counts()159# In[168]:160new_old= pd.concat([old_customer, new_customer], axis = 1, keys =['OLD', 'NEW'])161# In[171]:162new_old = new_old.T163# In[173]:164new_old['match_rate'] = new_old['MATCH']/(new_old['MATCH']+new_old['UNMATCH'])165# In[187]:166new_old.index.name = 'customer_type'167# In[188]:168new_old169# In[198]:170new_old['match_rate'].plot(kind='bar')171# In[201]:172import pickle173# In[202]:174model_file = 'opty_randomforest.sav'175# In[204]:176pickle.dump(classifier, open(model_file, 'wb'))177# In[206]:178pwd179# In[207]:180scaler_file = 'opty_scaler.sav'181# In[208]:182pickle.dump(scaler,open(scaler_file, 'wb'))183# In[209]:184loaded_model = pickle.load(open(model_file, 'rb'))185# In[213]:186test_y.set_index('index', inplace = True)187loaded_model.score(test_x_scaled, test_y)188# In[249]:189type(test_x_scaled)190loaded_scaler = pickle.load(open(scaler_file, 'rb'))191sample_test = pd.DataFrame({'BEF_1M_SLNG_AMT': 816574, 'CIRCUIT_NUM': 40, 'INVST_STG_CD_A': 1,'INVST_STG_CD_B': 0,192 'X_OPTY_TYPE_A': 1, 'X_OPTY_TYPE_B':0, 'MARKET_CLASS_CD_201':0,'MARKET_CLASS_CD_402': 0, 'MARKET_CLASS_CD_701':1,193 'MARKET_CLASS_CD_901':0, 'MARKET_CLASS_CD_201':0, 'MARKET_CLASS_CD_402':0, 'MARKET_CLASS_CD_404': 0,194 'MARKET_CLASS_CD_701':1,'MARKET_CLASS_CD_901':0, 'MARKET_CLASS_CD_G01':0}, index=[0])195#sample_test = sample_test.reshape(-1, 1)196#sample_test[0:10]197#scaled_sample = loaded_scaler.transform(sample_test)198# In[250]:199sample_test.head(3)200# In[251]:201scaled_sample = loaded_scaler.transform(sample_test)202# In[242]:203test_x.head(3)...
test_verify2.py
Source:test_verify2.py
1from .test_verify import *2# This test file runs normally after test_verify. We only clean up the .c3# sources, to check that it also works when we have only the .so. The4# tests should run much faster than test_verify.5def setup_module():6 import cffi.verifier...
Check out the latest blogs from LambdaTest on this topic:
In an ideal world, you can test your web application in the same test environment and return the same results every time. The reality can be difficult sometimes when you have flaky tests, which may be due to the complexity of the web elements you are trying to perform an action on your test case.
With the rising demand for new services and technologies in the IT, manufacturing, healthcare, and financial sector, QA/ DevOps engineering has become the most important part of software companies. Below is a list of some characteristics to look for when interviewing a potential candidate.
Building a website is all about keeping the user experience in mind. Ultimately, it’s about providing visitors with a mind-blowing experience so they’ll keep coming back. One way to ensure visitors have a great time on your site is to add some eye-catching text or image animations.
In addition to the four values, the Agile Manifesto contains twelve principles that are used as guides for all methodologies included under the Agile movement, such as XP, Scrum, and Kanban.
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!