Best Python code snippet using locust
get_bounds_test.py
Source:get_bounds_test.py
1# coding=utf-82# Copyright 2021 The Google Research Authors.3#4# Licensed under the Apache License, Version 2.0 (the "License");5# you may not use this file except in compliance with the License.6# You may obtain a copy of the License at7#8# http://www.apache.org/licenses/LICENSE-2.09#10# Unless required by applicable law or agreed to in writing, software11# distributed under the License is distributed on an "AS IS" BASIS,12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.13# See the License for the specific language governing permissions and14# limitations under the License.15"""Tests for aqt.jax.get_bounds."""16from absl.testing import absltest17from absl.testing import parameterized18import flax19from jax import random20import jax.numpy as jnp21import numpy as onp22from aqt.jax import get_bounds23from aqt.jax import quant_config24from aqt.jax import test_utils25test_utils.configure_jax()26class GetBoundsTest(parameterized.TestCase):27 def setUp(self):28 super(GetBoundsTest, self).setUp()29 self.rng = random.PRNGKey(0)30 key1, key2 = random.split(self.rng)31 self.key2 = key232 self.x = random.normal(key1, (4, 3, 2))33 self.x2 = jnp.ones((4, 3, 2))34 self.hyperparam = get_bounds.GetBounds.Hyper(35 initial_bound=6.0,36 stddev_coeff=2.0,37 absdev_coeff=1.5,38 mix_coeff=0.7,39 reset_stats=False,40 granularity=quant_config.QuantGranularity.per_channel)41 def init_model(self,42 update_bounds,43 update_stats=True,44 reset_stats=False,45 use_cams=False,46 granularity=quant_config.QuantGranularity.per_tensor,47 ema_coeff=None):48 self.hyperparam = get_bounds.GetBounds.Hyper(49 initial_bound=self.hyperparam.initial_bound,50 stddev_coeff=self.hyperparam.stddev_coeff,51 absdev_coeff=self.hyperparam.absdev_coeff,52 mix_coeff=self.hyperparam.mix_coeff,53 reset_stats=reset_stats,54 use_cams=use_cams,55 ema_coeff=ema_coeff,56 granularity=granularity)57 gb_bounds_params = get_bounds.GetBounds.Params(58 update_bounds=update_bounds, update_stats=update_stats)59 bounds_module = get_bounds.GetBounds(hyper=self.hyperparam)60 init_state = bounds_module.init(61 self.key2, self.x, bounds_params=gb_bounds_params)62 return bounds_module, init_state, gb_bounds_params63 # TODO(shivaniagrawal): parametrize test for different values of axis64 @parameterized.named_parameters(65 dict(testcase_name='update_bound', update_bound=True),66 dict(testcase_name='do_not_update', update_bound=False),67 )68 def test_get_bounds_init(self, update_bound):69 _, init_state, _ = self.init_model(update_bound)70 init_state_stats = init_state['get_bounds']['stats']71 onp.testing.assert_array_equal(init_state_stats.n, 0)72 onp.testing.assert_array_equal(init_state_stats.mean, 0)73 onp.testing.assert_array_equal(init_state_stats.mean_abs, 0)74 onp.testing.assert_array_equal(init_state_stats.mean_sq, 0)75 onp.testing.assert_array_equal(init_state['get_bounds']['bounds'], 6.)76 # TODO(shivaniagrawal): more elaborate testing here as follows:77 # - run with (update_stats, update_bounds) = (False, False)78 # check that neither state changed79 # - run with (update_stats, update_bounds) = (True, False)80 # check that stats.n increased, bound unchanged81 # - run with (update_stats, update_bounds) = (False, True)82 # check that stats.n unchanged but bound updated.83 # - run again with (update_stats, update_bounds) = (False, True)84 # check that both unchanged (update_bounds is idempotent)85 # - run again with (update_stats, update_bounds) = (True, True)86 # check that both changed.87 @parameterized.named_parameters(88 dict(89 testcase_name='update_bound_reset_stats',90 update_bound=True,91 reset_stats=True),92 dict(93 testcase_name='no_update_bound_reset_stats',94 update_bound=False,95 reset_stats=True),96 dict(97 testcase_name='update_bound_no_reset_stats',98 update_bound=True,99 reset_stats=False),100 dict(101 testcase_name='no_update_bound_no_reset_stats',102 update_bound=False,103 reset_stats=False),104 )105 def test_update_stats(self, update_bound, reset_stats):106 model, init_state, params = self.init_model(107 update_bound,108 reset_stats=reset_stats,109 granularity=quant_config.QuantGranularity.per_tensor)110 _, state_0 = model.apply(111 init_state, self.x, bounds_params=params, mutable='get_bounds')112 stats_0_stats = state_0['get_bounds']['stats']113 if reset_stats and update_bound:114 onp.testing.assert_array_equal(stats_0_stats.n, 0)115 else:116 onp.testing.assert_array_equal(stats_0_stats.n, 1)117 _, state = model.apply(118 state_0, self.x2, bounds_params=params, mutable='get_bounds')119 stats = state['get_bounds']['stats']120 if reset_stats and update_bound:121 onp.testing.assert_array_equal(stats.n, 0)122 expected_updated_mean = 0.123 onp.testing.assert_array_equal(expected_updated_mean, stats.mean)124 else:125 onp.testing.assert_array_equal(stats.n, 2)126 expected_updated_mean = 1 / 2 * (1 + (stats_0_stats.mean))127 onp.testing.assert_array_equal(expected_updated_mean, stats.mean)128 @parameterized.named_parameters(129 dict(130 testcase_name='update_bound_reset_stats',131 update_bound=True,132 reset_stats=True),133 dict(134 testcase_name='no_update_bound_reset_stats',135 update_bound=False,136 reset_stats=True),137 dict(138 testcase_name='update_bound_no_reset_stats',139 update_bound=True,140 reset_stats=False),141 dict(142 testcase_name='no_update_bound_no_reset_stats',143 update_bound=False,144 reset_stats=False),145 )146 def test_update_stats_false(self, update_bound, reset_stats):147 model, init_state, params = self.init_model(148 update_bound, update_stats=False, reset_stats=reset_stats)149 _, state_0 = model.apply(150 init_state, self.x, bounds_params=params, mutable='get_bounds')151 stats_0_stats = state_0['get_bounds']['stats']152 onp.testing.assert_array_equal(stats_0_stats.n, 0)153 _, state = model.apply(154 state_0, self.x2, bounds_params=params, mutable='get_bounds')155 onp.testing.assert_array_equal(state['get_bounds']['stats'].n, 0)156 expected_updated_mean = 0.157 onp.testing.assert_array_equal(expected_updated_mean,158 state['get_bounds']['stats'].mean)159 @parameterized.named_parameters(160 dict(161 testcase_name='update_bounds_true',162 update_stats=False,163 update_bounds=True),164 dict(165 testcase_name='update_stats_true',166 update_stats=True,167 update_bounds=False),168 dict(testcase_name='both_true', update_stats=True, update_bounds=True),169 )170 def test_update_state_with_mutable_false_context_raises_error(171 self, update_stats, update_bounds):172 model, init_state, _ = self.init_model(True)173 with self.assertRaises(flax.errors.ModifyScopeVariableError):174 model.apply(175 init_state,176 self.x2,177 bounds_params=get_bounds.GetBounds.Params(178 update_stats=update_stats, update_bounds=update_bounds),179 mutable=False)180 @parameterized.named_parameters(181 dict(182 testcase_name='update_bound_no_ucb',183 update_bound=True,184 use_cams=False),185 dict(186 testcase_name='update_bound_with_ucb',187 update_bound=True,188 use_cams=True),189 dict(testcase_name='do_not_update', update_bound=False, use_cams=False),190 )191 def test_get_bounds_update_bounds(self, update_bound, use_cams=False):192 model, init_state, params = self.init_model(update_bound, use_cams=use_cams)193 y, state_0 = model.apply(194 init_state, self.x, bounds_params=params, mutable='get_bounds')195 if not update_bound:196 onp.testing.assert_array_equal(state_0['get_bounds']['bounds'], 6.)197 onp.testing.assert_array_equal(y, 6.)198 else:199 stats_0_stats = state_0['get_bounds']['stats']200 if use_cams:201 expected_y = onp.abs(onp.mean(202 self.x)) + self.hyperparam.stddev_coeff * onp.std(self.x)203 else:204 expected_y = (205 self.hyperparam.stddev_coeff * self.hyperparam.mix_coeff *206 jnp.sqrt(stats_0_stats.mean_sq) + self.hyperparam.absdev_coeff *207 (1 - self.hyperparam.mix_coeff) * stats_0_stats.mean_abs)208 onp.testing.assert_array_equal(state_0['get_bounds']['bounds'], y)209 onp.testing.assert_allclose(expected_y, y)210 y2, state = model.apply(211 state_0, self.x2, bounds_params=params, mutable='get_bounds')212 onp.testing.assert_array_equal(state['get_bounds']['bounds'], y2)213 @parameterized.named_parameters(214 dict(testcase_name='no_ema', ema_coeff=None),215 dict(testcase_name='ema_.8', ema_coeff=0.8),216 dict(testcase_name='ema_.1', ema_coeff=0.1))217 def test_ema_coeff(self, ema_coeff):218 x1 = jnp.array(1.0)219 x2 = jnp.array(-2.0)220 model, state, params = self.init_model(False, ema_coeff=ema_coeff)221 _, state1 = model.apply(222 state, x1, bounds_params=params, mutable='get_bounds')223 _, state2 = model.apply(224 state1, x2, bounds_params=params, mutable='get_bounds')225 stats = state2['get_bounds']['stats']226 def compute_ema_two_steps(x1, x2, alpha):227 initial_value = 0.0228 ema_step_1 = initial_value + alpha * (x1 - initial_value)229 ema_step_2 = ema_step_1 + alpha * (x2 - ema_step_1)230 return ema_step_2231 if ema_coeff is None:232 exp_mean = (x1 + x2) / 2233 exp_mean_sq = (x1**2 + x2**2) / 2234 exp_mean_abs = (jnp.abs(x1) + jnp.abs(x2)) / 2235 else:236 exp_mean = compute_ema_two_steps(x1, x2, ema_coeff)237 exp_mean_sq = compute_ema_two_steps(x1**2, x2**2, ema_coeff)238 exp_mean_abs = compute_ema_two_steps(jnp.abs(x1), jnp.abs(x2), ema_coeff)239 onp.testing.assert_allclose(stats.mean, exp_mean)240 onp.testing.assert_allclose(stats.mean_sq, exp_mean_sq)241 onp.testing.assert_allclose(stats.mean_abs, exp_mean_abs)242 print(stats)243 return244if __name__ == '__main__':...
game_stats.py
Source:game_stats.py
...9#10# def __init__(self, ai_settings):11# """åå§åç»è®¡ä¿¡æ¯"""12# self.ai_settings = ai_settings13# self.reset_stats()14#15# # 游æåå¯å¨æ¶å¤äºæ´»å¨ç¶æ16# self.game_active = True17#18# def reset_stats(self):19# """åå§åå¨æ¸¸æè¿è¡æé´å¯è½ååçç»è®¡ä¿¡æ¯"""20# self.ships_left = self.ai_settings.ship_limit21# ------------------ example01 ------------------22# print("*" * 20)23# ------------------ example02 ------------------24# class GameStats():25# """è·è¸ªæ¸¸æçç»è®¡ä¿¡æ¯"""26#27# def __init__(self, ai_settings):28# """åå§åç»è®¡ä¿¡æ¯"""29# self.ai_settings = ai_settings30# self.reset_stats()31#32# # 让游æä¸å¼å§å¤äºéæ´»å¨ç¶æ33# self.game_active = False34#35# def reset_stats(self):36# """åå§åå¨æ¸¸æè¿è¡æé´å¯è½ååçç»è®¡ä¿¡æ¯"""37# self.ships_left = self.ai_settings.ship_limit38# ------------------ example02 ------------------39# print("*" * 20)40# ------------------ example03 ------------------41# class GameStats():42# """è·è¸ªæ¸¸æçç»è®¡ä¿¡æ¯"""43#44# def __init__(self, ai_settings):45# """åå§åç»è®¡ä¿¡æ¯"""46# self.ai_settings = ai_settings47# self.reset_stats()48#49# # 让游æä¸å¼å§å¤äºéæ´»å¨ç¶æ50# self.game_active = False51#52# def reset_stats(self):53# """åå§åå¨æ¸¸æè¿è¡æé´å¯è½ååçç»è®¡ä¿¡æ¯"""54# self.ships_left = self.ai_settings.ship_limit55# self.score = 056# ------------------ example03 ------------------57# print("*" * 20)58# ------------------ example04 ------------------59# class GameStats():60# """è·è¸ªæ¸¸æçç»è®¡ä¿¡æ¯"""61#62# def __init__(self, ai_settings):63# """åå§åç»è®¡ä¿¡æ¯"""64# self.ai_settings = ai_settings65# self.reset_stats()66#67# # 让游æä¸å¼å§å¤äºéæ´»å¨ç¶æ68# self.game_active = False69#70# # å¨ä»»ä½æ
åµä¸é½ä¸åºéç½®æé«å¾å71# self.high_score = 072#73# def reset_stats(self):74# """åå§åå¨æ¸¸æè¿è¡æé´å¯è½ååçç»è®¡ä¿¡æ¯"""75# self.ships_left = self.ai_settings.ship_limit76# self.score = 077# ------------------ example04 ------------------78# print("*" * 20)79# ------------------ example05 ------------------80class GameStats():81 """è·è¸ªæ¸¸æçç»è®¡ä¿¡æ¯"""82 def __init__(self, ai_settings):83 """åå§åç»è®¡ä¿¡æ¯"""84 self.ai_settings = ai_settings85 self.reset_stats()86 # 让游æä¸å¼å§å¤äºéæ´»å¨ç¶æ87 self.game_active = False88 # å¨ä»»ä½æ
åµä¸é½ä¸åºéç½®æé«å¾å89 self.high_score = 090 def reset_stats(self):91 """åå§åå¨æ¸¸æè¿è¡æé´å¯è½ååçç»è®¡ä¿¡æ¯"""92 self.ships_left = self.ai_settings.ship_limit93 self.score = 094 self.level = 1...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!