How to use _get_user_current_count method in locust

Best Python code snippet using locust

test_dispatch.py

Source:test_dispatch.py Github

copy

Full Screen

...2883 list(users_dispatcher)2884 for user_class in user_classes:2885 if user_class.fixed_count:2886 self.assertEqual(2887 users_dispatcher._get_user_current_count(user_class.__name__),2888 user_class.fixed_count,2889 )2890 # Ramp-down to go to `down_to_count`2891 # and ensure the fixed users was decreased too2892 users_dispatcher.new_dispatch(target_user_count=down_to_count, spawn_rate=1)2893 users_dispatcher._wait_between_dispatch = 02894 list(users_dispatcher)2895 for user_class in user_classes:2896 if user_class.fixed_count:2897 self.assertNotEqual(2898 users_dispatcher._get_user_current_count(user_class.__name__),2899 user_class.fixed_count,2900 )2901 # Ramp-up go back to `target_user_count` and ensure2902 # the fixed users return to their counts2903 users_dispatcher.new_dispatch(target_user_count=target_user_count, spawn_rate=1)2904 users_dispatcher._wait_between_dispatch = 02905 list(users_dispatcher)2906 for user_class in user_classes:2907 if user_class.fixed_count:2908 self.assertEqual(2909 users_dispatcher._get_user_current_count(user_class.__name__),2910 user_class.fixed_count,2911 )2912def _aggregate_dispatched_users(d: Dict[str, Dict[str, int]]) -> Dict[str, int]:2913 user_classes = list(next(iter(d.values())).keys())2914 return {u: sum(d[u] for d in d.values()) for u in user_classes}2915def _user_count(d: Dict[str, Dict[str, int]]) -> int:2916 return sum(map(sum, map(dict.values, d.values()))) # type: ignore2917def _user_count_on_worker(d: Dict[str, Dict[str, int]], worker_node_id: str) -> int:...

Full Screen

Full Screen

dispatch.py

Source:dispatch.py Github

copy

Full Screen

...228 self._current_user_count -= 1229 self._try_dispatch_fixed = True230 if self._current_user_count == 0 or self._current_user_count <= current_user_count_target:231 return self._users_on_workers232 def _get_user_current_count(self, user: str) -> int:233 count = 0234 for users_on_node in self._users_on_workers.values():235 count += users_on_node.get(user, 0)236 return count237 def _distribute_users(238 self, target_user_count: int239 ) -> Tuple[240 Dict[str, Dict[str, int]], Generator[Optional[str], None, None], itertools.cycle, List[Tuple["WorkerNode", str]]241 ]:242 """243 This function might take some time to complete if the `target_user_count` is a big number. A big number244 is typically > 50 000. However, this function is only called if a worker is added or removed while a test245 is running. Such a situation should be quite rare.246 """247 user_gen = self._user_gen()248 worker_gen = itertools.cycle(self._worker_nodes)249 users_on_workers = {250 worker_node.id: {user_class.__name__: 0 for user_class in self._user_classes}251 for worker_node in self._worker_nodes252 }253 active_users = []254 user_count = 0255 while user_count < target_user_count:256 user = next(user_gen)257 if not user:258 break259 worker_node = next(worker_gen)260 users_on_workers[worker_node.id][user] += 1261 user_count += 1262 active_users.append((worker_node, user))263 return users_on_workers, user_gen, worker_gen, active_users264 def _user_gen(self) -> Generator[Optional[str], None, None]:265 """266 This method generates users according to their weights using267 a smooth weighted round-robin algorithm implemented by https://github.com/linnik/roundrobin.268 For example, given users A, B with weights 5 and 1 respectively, this algorithm269 will yield AAABAAAAABAA. The smooth aspect of this algorithm is what makes it possible270 to keep the distribution during ramp-up and ramp-down. If we were to use a normal271 weighted round-robin algorithm, we'd get AAAAABAAAAAB which would make the distribution272 less accurate during ramp-up/down.273 """274 def infinite_cycle_gen(users: List[Tuple[Type[User], int]]) -> itertools.cycle:275 if not users:276 return itertools.cycle([None])277 # Normalize the weights so that the smallest weight will be equal to "target_min_weight".278 # The value "2" was experimentally determined because it gave a better distribution especially279 # when dealing with weights which are close to each others, e.g. 1.5, 2, 2.4, etc.280 target_min_weight = 2281 # 'Value' here means weight or fixed count282 normalized_values = [283 (284 user.__name__,285 round(target_min_weight * value / min(u[1] for u in users)),286 )287 for user, value in users288 ]289 generation_length_to_get_proper_distribution = sum(290 normalized_val[1] for normalized_val in normalized_values291 )292 gen = smooth(normalized_values)293 # Instead of calling `gen()` for each user, we cycle through a generator of fixed-length294 # `generation_length_to_get_proper_distribution`. Doing so greatly improves performance because295 # we only ever need to call `gen()` a relatively small number of times. The length of this generator296 # is chosen as the sum of the normalized weights. So, for users A, B, C of weights 2, 5, 6, the length is297 # 2 + 5 + 6 = 13 which would yield the distribution `CBACBCBCBCABC` that gets repeated over and over298 # until the target user count is reached.299 return itertools.cycle(gen() for _ in range(generation_length_to_get_proper_distribution))300 fixed_users = {u.__name__: u for u in self._user_classes if u.fixed_count}301 cycle_fixed_gen = infinite_cycle_gen([(u, u.fixed_count) for u in fixed_users.values()])302 cycle_weighted_gen = infinite_cycle_gen([(u, u.weight) for u in self._user_classes if not u.fixed_count])303 # Spawn users304 while True:305 if self._try_dispatch_fixed:306 self._try_dispatch_fixed = False307 current_fixed_users_count = {u: self._get_user_current_count(u) for u in fixed_users}308 spawned_classes: Set[str] = set()309 while len(spawned_classes) != len(fixed_users):310 user_name: Optional[str] = next(cycle_fixed_gen)311 if not user_name:312 break313 if current_fixed_users_count[user_name] < fixed_users[user_name].fixed_count:314 current_fixed_users_count[user_name] += 1315 if current_fixed_users_count[user_name] == fixed_users[user_name].fixed_count:316 spawned_classes.add(user_name)317 yield user_name318 # 'self._try_dispatch_fixed' was changed outhere, we have to recalculate current count319 if self._try_dispatch_fixed:320 current_fixed_users_count = {u: self._get_user_current_count(u) for u in fixed_users}321 spawned_classes.clear()322 self._try_dispatch_fixed = False323 yield next(cycle_weighted_gen)324 @staticmethod325 def _fast_users_on_workers_copy(users_on_workers: Dict[str, Dict[str, int]]) -> Dict[str, Dict[str, int]]:326 """deepcopy is too slow, so we use this custom copy function.327 The implementation was profiled and compared to other implementations such as dict-comprehensions328 and the one below is the most efficient.329 """330 # type is ignored due to: https://github.com/python/mypy/issues/1507...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run locust automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful