Best Python code snippet using localstack_python
Experiment.py
Source:Experiment.py
1from Data_Preprocessing import Data_Preprocessing_API2from Face_Name_Matching import Face_Name_Matching_API3from URL_Matching import URL_Matching_API4import Model_Ensembling5import os6from Image_Caption import Image_Cap_API7def create_folder(path):8 """9 create a folder if not exist10 :param path: path of the folder11 """12 isExist = os.path.exists(path)13 if not isExist:14 os.makedirs(path)15def create_all_folder():16 """17 create required folders18 """19 create_folder('processed_data')20 create_folder('img')21 create_folder(r'processed_data/data')22 create_folder(r'processed_data/img')23 create_folder('result')24def data_prepare():25 """26 data preparation27 """28 dpi = Data_Preprocessing_API()29 dpi.load_img()30 dpi.reformat_data()31 dpi.translate_title()32 Face_Name_Matching_API().create_train_data()33def eval(eval_face_tr_result, eval_face_crawl_result, eval_cap_result, eval_url_output):34 """35 evaluating the model performance on evaluation data36 :param eval_face_tr_result: file path of evaluation result from face name matching result37 (model is trained with face images in training dataset)38 :param eval_face_crawl_result: file path of evaluation result from face name matching result39 (model is trained with crawled face images)40 :param eval_cap_result: file path of evaluation result from image caption based method41 :param eval_url_output: file path of evaluation result from url matching based method42 """43 Face_Name_Matching_API().evaluate(eval_face_tr_result, eval_face_crawl_result)44 URL_Matching_API().evaluate(eval_url_output)45 Image_Cap_API().evaluate(eval_cap_result)46def predict(face_tr_result, face_crawl_result, test_cap_result, test_url_output,47 weight_cap, weight_img, final_output_result):48 """49 :param face_tr_result: file path of prediction from face name matching result50 (model is trained with face images in training dataset)51 :param face_crawl_result: file path of prediction from face name matching result52 (model is trained with crawled face images)53 :param test_cap_result: file path of prediction from image caption based method54 :param test_url_output: file path of prediction from url matching based method55 :param weight_cap: ensembling weights of image caption based model56 :param weight_img: ensembling weights of face-name matching based model57 :param final_output_result: file path of final result58 """59 Face_Name_Matching_API().test(face_tr_result, face_crawl_result)60 test_url_result = URL_Matching_API().test(test_url_output)61 Image_Cap_API().test(test_cap_result)62 Model_Ensembling().ensemble_model(test_cap_result, face_tr_result, face_crawl_result,...
test.py
Source:test.py
...11 with patch('requests.get') as mock_request:12 app()13 mock_request.assert_called_once_with("https://assets.breatheco.de/apis/fake/sample/time.php")14@pytest.mark.it("You should print on the console a stirng like: Current time: 19 hrs 45 min and 06 sec")15def test_url_output(capsys, app):16 with patch('requests.get') as mock_request:17 mock_request.return_value = FakeResponse()18 app()19 captured = capsys.readouterr()...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!