How to use test_interval method in localstack

Best Python code snippet using localstack_python

do_solve.py

Source:do_solve.py Github

copy

Full Screen

1def do_solve(niter, solver, disp_interval, test_interval, test_iters, training_id, batch_size):2 """Run solvers for niter iterations,3 returning the loss and recorded each iteration.4 `solvers` is a list of (name, solver) tuples."""5 import tempfile6 import numpy as np7 import os8 from pylab import zeros, arange, subplots, plt, savefig9 import glob10 import time11 # SET PLOTS DATA12 # train_loss = zeros(niter/disp_interval)13 train_loss_r = zeros(niter/disp_interval)14 train_correct_pairs = zeros(niter/disp_interval)15 # train_acc = zeros(niter/disp_interval)16 # val_loss = zeros(niter/test_interval)17 val_loss_r = zeros(niter/test_interval)18 val_correct_pairs = zeros(niter/test_interval)19 # val_acc = zeros(niter/test_interval)20 it_axes = (arange(niter) * disp_interval) + disp_interval21 it_val_axes = (arange(niter) * test_interval) + test_interval22 _, ax1 = subplots()23 ax2 = ax1.twinx()24 ax1.set_xlabel('iteration')25 ax1.set_ylabel('train loss (r), val loss (g),')# train loss_r (c), val loss_r (o)')26 ax2.set_ylabel('train correct pairs (b) val correct pairs (m)')# train top1 (y) val top1 (bk)')27 ax2.set_autoscaley_on(False)28 ax2.set_ylim([0, batch_size])29 # loss = {name: np.zeros(niter) for name, _ in solvers}30 loss_r = np.zeros(niter)31 correct_pairs = np.zeros(niter)32 # acc = {name: np.zeros(niter) for name, _ in solvers}33 lowest_val_loss = 100034 best_it = 035 #RUN TRAINING36 for it in range(niter):37 # start = time.time()38 solver.step(1) # run a single SGD step in Caffe39 # end = time.time()40 # print "Time step: " + str((end - start))41 # print "Max before ReLU: " + str(np.max(s.net.blobs['inception_5b/pool_proj'].data))42 # print "Max last FC: " + str(np.max(s.net.blobs['loss3/classifierCustom'].data))43 #loss[name][it] = s.net.blobs['loss3/loss3/classification'].data.copy()44 loss_r[it] = solver.net.blobs['loss3/loss3/ranking'].data.copy()45 correct_pairs[it] = solver.net.blobs['correct_pairs'].data.copy()46 # acc[name][it] = s.net.blobs['loss3/top-1'].data.copy()47 #PLOT48 if it % disp_interval == 0 or it + 1 == niter:49 # loss_disp = 'loss=' + str(loss['my_solver'][it]) + ' correct_pairs=' + str(correct_pairs['my_solver'][it]) + ' loss ranking=' + str(loss_r['my_solver'][it])50 loss_disp = ' correct_pairs=' + str(correct_pairs[it]) + ' loss ranking=' + str(loss_r[it])51 print '%3d) %s' % (it, loss_disp)52 # train_loss[it/disp_interval] = loss[it]53 train_loss_r[it/disp_interval] = loss_r[it]54 train_correct_pairs[it/disp_interval] = correct_pairs[it]55 # train_acc[it/disp_interval] = acc[it] *12056 # ax1.plot(it_axes[0:it/disp_interval], train_loss[0:it/disp_interval], 'r')57 ax1.plot(it_axes[0:it/disp_interval], train_loss_r[0:it/disp_interval], 'c')58 ax2.plot(it_axes[0:it/disp_interval], train_correct_pairs[0:it/disp_interval], 'b')59 # ax2.plot(it_axes[0:it/disp_interval], train_acc[0:it/disp_interval], 'gold')60 # if it > test_interval:61 # ax1.plot(it_val_axes[0:it/test_interval], val_loss[0:it/test_interval], 'g') #Val always on top62 ax1.set_ylim([0,2])63 plt.title(training_id)64 plt.ion()65 plt.grid(True)66 plt.show()67 plt.pause(0.001)68 # title = '../training/numbers/training-' + str(it) + '.png' # Save graph to disk69 # savefig(title, bbox_inches='tight')70 #VALIDATE71 if it % test_interval == 0 and it > 0:72 # loss_val = 073 loss_val_r = 074 cur_correct_pairs = 075 # cur_acc = 076 for i in range(test_iters):77 solver.test_nets[0].forward()78 # loss_val += solver.test_nets[0].blobs['loss3/loss3/classification'].data79 loss_val_r += solver.test_nets[0].blobs['loss3/loss3/ranking'].data80 cur_correct_pairs += solver.test_nets[0].blobs['correct_pairs'].data81 # cur_acc += solvers[0][1].test_nets[0].blobs['loss3/top-1'].data82 # loss_val /= test_iters83 loss_val_r /= test_iters84 cur_correct_pairs /= test_iters85 # cur_acc /= test_iters86 # cur_acc *= 12087 # print("Val loss: " + str(loss_val) + " Val correct pairs: " + str(cur_correct_pairs) + " Val loss ranking: " + str(loss_val_r) + "Val acc: "+ str(cur_acc))88 print(" Val correct pairs: " + str(cur_correct_pairs) + " Val loss ranking: " + str(loss_val_r))89 # val_loss[it/test_interval - 1] = loss_val90 val_loss_r[it/test_interval - 1] = loss_val_r91 val_correct_pairs[it/test_interval - 1] = cur_correct_pairs92 # val_acc[it/test_interval - 1] = cur_acc93 # ax1.plot(it_val_axes[0:it/test_interval], val_loss[0:it/test_interval], 'g')94 ax1.plot(it_val_axes[0:it/test_interval], val_loss_r[0:it/test_interval], 'orange')95 ax2.plot(it_val_axes[0:it/test_interval], val_correct_pairs[0:it/test_interval], 'm')96 # ax2.plot(it_val_axes[0:it/test_interval], val_acc[0:it/test_interval], 'k')97 ax1.set_ylim([0,2])98 ax1.set_xlabel('iteration ' + 'Best it: ' + str(best_it) + ' Best Val Loss: ' + str(int(lowest_val_loss)))99 plt.title(training_id)100 plt.ion()101 plt.grid(True)102 plt.show()103 plt.pause(0.001)104 title = '../../../hd/datasets/instaFashion/models/training/' + training_id + str(it) + '.png' # Save graph to disk105 savefig(title, bbox_inches='tight')106 if loss_val_r < lowest_val_loss:107 print("Best Val loss!")108 lowest_val_loss = loss_val_r109 best_it = it110 filename = '../../../hd/datasets/instaFashion/models/CNNContrastive/' + training_id + 'best_valLoss_' + str(111 int(loss_val_r)) + '_it_' + str(it) + '.caffemodel'112 prefix = 30113 for cur_filename in glob.glob(filename[:-prefix] + '*'):114 print(cur_filename)115 os.remove(cur_filename)...

Full Screen

Full Screen

__init__.py

Source:__init__.py Github

copy

Full Screen

1# import numpy as np2# import PIL.Image3# from dream_utils import *4# resize_in = (224, 224)5# resize_out = (700, 700)6# Athena squared7# image = np.float32(PIL.Image.open('images/athena_louvre_700px.jpg'))8# image_mask = PIL.Image.open('images/athena_louvre_700px_face_mask.png')9# Louise10# image = np.float32(PIL.Image.open('images/louise.jpg'))11# image_mask = PIL.Image.open('images/louise_crop_mask.png')12TIME_FORMAT = "%Y-%m-%d_%H:%M:%S.%f"13SOLVERS = [14 # {'name': '0010', 'snapshot': 1, 'max_iter': 10, 'base_lr': 0.0001, 'test_interval': 10}, # 015 {'snapshot': 1, 'max_iter': 20, 'base_lr': 0.0001, 'test_interval': 20}, # 116 {'snapshot': 1, 'max_iter': 40, 'base_lr': 0.001, 'test_interval': 20}, # 217 {'snapshot': 1, 'max_iter': 80, 'base_lr': 0.01, 'test_interval': 40}, # 318 {'snapshot': 1, 'max_iter': 120, 'base_lr': 0.01, 'test_interval': 20}, # 419 {'snapshot': 1, 'max_iter': 160, 'base_lr': 0.01, 'test_interval': 20}, # 520 {'snapshot': 1, 'max_iter': 200, 'base_lr': 0.01, 'test_interval': 20}, # 621 {'snapshot': 1, 'max_iter': 220, 'base_lr': 0.02, 'test_interval': 10}, # 722 {'snapshot': 1, 'max_iter': 240, 'base_lr': 0.02, 'test_interval': 10}, # 823 {'snapshot': 1, 'max_iter': 250, 'base_lr': 0.03, 'test_interval': 10}, # 924 {'snapshot': 1, 'max_iter': 260, 'base_lr': 0.01, 'test_interval': 10}, # 1025 {'snapshot': 1, 'max_iter': 270, 'base_lr': 0.0005, 'test_interval': 10}, # 1126 {'snapshot': 1, 'max_iter': 290, 'base_lr': 0.001, 'test_interval': 10}, # 1227 {'snapshot': 5, 'max_iter': 340, 'base_lr': 0.01, 'test_interval': 10}, # 1328 {'snapshot': 20, 'max_iter': 480, 'base_lr': 0.01, 'test_interval': 100}, # 1429 {'snapshot': 20, 'max_iter': 680, 'base_lr': 0.01, 'test_interval': 100}, # 1530 {'snapshot': 20, 'max_iter': 880, 'base_lr': 0.01, 'test_interval': 100}, # 1631 {'snapshot': 20, 'max_iter': 1080, 'base_lr': 0.01, 'test_interval': 100}, # 1732 {'snapshot': 40, 'max_iter': 1200, 'base_lr': 0.01, 'test_interval': 100}, # 1833 {'snapshot': 40, 'max_iter': 1400, 'base_lr': 0.005, 'test_interval': 100}, # 1934 {'snapshot': 100, 'max_iter': 2200, 'base_lr': 0.005, 'test_interval': 200}, # 2035 {'snapshot': 100, 'max_iter': 3000, 'base_lr': 0.005, 'test_interval': 200}, # 2136 {'snapshot': 1, 'max_iter': 3020, 'base_lr': 0.001, 'test_interval': 20, 'gamma': 1.0}, # 2237 {'snapshot': 1, 'max_iter': 3040, 'base_lr': 0.01, 'test_interval': 20, 'gamma': 1.0}, # 2338 {'snapshot': 1, 'max_iter': 3060, 'base_lr': 0.02, 'test_interval': 20, 'gamma': 1.0}, # 2439 {'snapshot': 1, 'max_iter': 3080, 'base_lr': 0.015, 'test_interval': 20, 'gamma': 1.0}, # 2540 {'snapshot': 1, 'max_iter': 3100, 'base_lr': 0.01, 'test_interval': 20, 'gamma': 1.0}, # 2641 {'snapshot': 1, 'max_iter': 3150, 'base_lr': 0.005, 'test_interval': 25, 'gamma': 1.0}, # 2742 {'snapshot': 1, 'max_iter': 3170, 'base_lr': 0.005, 'test_interval': 20, 'gamma': 1.0}, # 2843 {'snapshot': 1, 'max_iter': 3200, 'base_lr': 0.005, 'test_interval': 20, 'gamma': 1.0}, # 2944 {'snapshot': 10, 'max_iter': 3300, 'base_lr': 0.001, 'test_interval': 20, 'gamma': 1.0}, # 3045 {'snapshot': 25, 'max_iter': 3500, 'base_lr': 0.0005, 'test_interval': 100, 'gamma': 1.0}, # 3146]47# default solver name equals to max_iter48for solver in SOLVERS:49 if not solver.has_key('name'):50 solver['name'] = '%s' % solver['max_iter']51RIA_MODEL_DIR = 'models/Ria_Gurtow/'52RIA_MODEL_SNAPSHOTS_PREFIX = 'models/Ria_Gurtow/generations/ria_gurtow_iter_'53EMOTIONS_MODEL = 'models/VGG_S_rgb/EmotiW_VGG_S.caffemodel'...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run localstack automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful