How to use is_container_running method in localstack

Best Python code snippet using localstack_python

node.py

Source:node.py Github

copy

Full Screen

...188 :type: str189 """190 self._transition_reason = transition_reason191 @property192 def is_container_running(self):193 """194 Gets the is_container_running of this Node.195 :return: The is_container_running of this Node.196 :rtype: bool197 """198 return self._is_container_running199 @is_container_running.setter200 def is_container_running(self, is_container_running):201 """202 Sets the is_container_running of this Node.203 :param is_container_running: The is_container_running of this Node.204 :type: bool205 """206 self._is_container_running = is_container_running207 @property208 def os_version(self):209 """210 Gets the os_version of this Node.211 :return: The os_version of this Node.212 :rtype: str213 """214 return self._os_version...

Full Screen

Full Screen

test_elasticsearch_eager.py

Source:test_elasticsearch_eager.py Github

copy

Full Screen

...31 "Content-Type": "application/json",32 "Authorization": "Basic ZWxhc3RpYzpkZWZhdWx0X3Bhc3N3b3Jk",33}34ATTRS = ["name", "gender", "age", "fare", "vip", "survived"]35def is_container_running():36 """Check whether the elasticsearch container is up and running37 with the correct port being exposed.38 """39 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)40 status = sock.connect_ex(("127.0.0.1", 9200))41 if status == 0:42 return True43 else:44 return False45@pytest.mark.skipif(not is_container_running(), reason="The container is not running")46def test_create_index():47 """Create an index in the cluster"""48 create_index_url = "{}/{}".format(NODE, INDEX)49 res = requests.put(create_index_url, headers=HEADERS)50 assert res.status_code == 20051@pytest.mark.parametrize(52 "record",53 [54 (("person1", "Male", 20, 80.52, False, 1)),55 (("person2", "Female", 30, 40.88, True, 0)),56 (("person3", "Male", 40, 20.73, True, 0)),57 (("person4", "Female", 50, 100.99, False, 1)),58 ],59)60@pytest.mark.skipif(not is_container_running(), reason="The container is not running")61def test_populate_data(record):62 """Populate the index with data"""63 put_item_url = "{}/{}/{}".format(NODE, INDEX, DOC_TYPE)64 data = {}65 for idx, attr in enumerate(ATTRS):66 data[attr] = record[idx]67 res = requests.post(put_item_url, json=data, headers=HEADERS)68 # The 201 status code indicates the documents have been properly indexed69 assert res.status_code == 20170 # allow the cluster to index in the background.71 time.sleep(1)72@pytest.mark.skipif(not is_container_running(), reason="The container is not running")73def test_elasticsearch_io_dataset():74 """Test the functionality of the ElasticsearchIODataset"""75 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(76 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE, headers=HEADERS77 )78 assert issubclass(type(dataset), tf.data.Dataset)79 for item in dataset:80 for attr in ATTRS:81 assert attr in item82@pytest.mark.skipif(not is_container_running(), reason="The container is not running")83def test_elasticsearch_io_dataset_no_auth():84 """Test the functionality of the ElasticsearchIODataset when basic auth is85 required but the associated header is not passed.86 """87 try:88 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(89 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE90 )91 except ConnectionError as e:92 assert str(93 e94 ) == "No healthy node available for the index: {}, please check the cluster config".format(95 INDEX96 )97@pytest.mark.skipif(not is_container_running(), reason="The container is not running")98def test_elasticsearch_io_dataset_batch():99 """Test the functionality of the ElasticsearchIODataset"""100 BATCH_SIZE = 2101 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(102 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE, headers=HEADERS103 ).batch(BATCH_SIZE)104 assert issubclass(type(dataset), tf.data.Dataset)105 for item in dataset:106 for attr in ATTRS:107 assert attr in item108 assert len(item[attr]) == BATCH_SIZE109@pytest.mark.skipif(not is_container_running(), reason="The container is not running")110def test_elasticsearch_io_dataset_training():111 """Test the functionality of the ElasticsearchIODataset by training a112 tf.keras model on the structured data.113 """114 BATCH_SIZE = 2115 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(116 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE, headers=HEADERS117 )118 dataset = dataset.map(lambda v: (v, v.pop("survived")))119 dataset = dataset.batch(BATCH_SIZE)120 assert issubclass(type(dataset), tf.data.Dataset)121 feature_columns = []122 # Numeric column123 fare_column = feature_column.numeric_column("fare")124 feature_columns.append(fare_column)125 # Bucketized column126 age = feature_column.numeric_column("age")127 age_buckets = feature_column.bucketized_column(age, boundaries=[10, 30])128 feature_columns.append(age_buckets)129 # Categorical column130 gender = feature_column.categorical_column_with_vocabulary_list(131 "gender", ["Male", "Female"]132 )133 gender_indicator = feature_column.indicator_column(gender)134 feature_columns.append(gender_indicator)135 # Convert the feature columns into a tf.keras layer136 feature_layer = tf.keras.layers.DenseFeatures(feature_columns)137 # Build the model138 model = tf.keras.Sequential(139 [140 feature_layer,141 layers.Dense(128, activation="relu"),142 layers.Dense(128, activation="relu"),143 layers.Dropout(0.1),144 layers.Dense(1),145 ]146 )147 # Compile the model148 model.compile(149 optimizer="adam",150 loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),151 metrics=["accuracy"],152 )153 # train the model154 model.fit(dataset, epochs=5)155@pytest.mark.skipif(not is_container_running(), reason="The container is not running")156def test_cleanup():157 """Clean up the index"""158 delete_index_url = "{}/{}".format(NODE, INDEX)159 res = requests.delete(delete_index_url, headers=HEADERS)...

Full Screen

Full Screen

test_elasticsearch.py

Source:test_elasticsearch.py Github

copy

Full Screen

...31 "Content-Type": "application/json",32 "Authorization": "Basic ZWxhc3RpYzpkZWZhdWx0X3Bhc3N3b3Jk",33}34ATTRS = ["name", "gender", "age", "fare", "vip", "survived"]35def is_container_running():36 """Check whether the elasticsearch container is up and running37 with the correct port being exposed.38 """39 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)40 status = sock.connect_ex(("127.0.0.1", 9200))41 if status == 0:42 return True43 else:44 return False45@pytest.mark.skipif(not is_container_running(), reason="The container is not running")46def test_create_index():47 """Create an index in the cluster"""48 create_index_url = f"{NODE}/{INDEX}"49 res = requests.put(create_index_url, headers=HEADERS)50 assert res.status_code == 20051@pytest.mark.parametrize(52 "record",53 [54 (("person1", "Male", 20, 80.52, False, 1)),55 (("person2", "Female", 30, 40.88, True, 0)),56 (("person3", "Male", 40, 20.73, True, 0)),57 (("person4", "Female", 50, 100.99, False, 1)),58 ],59)60@pytest.mark.skipif(not is_container_running(), reason="The container is not running")61def test_populate_data(record):62 """Populate the index with data"""63 put_item_url = f"{NODE}/{INDEX}/{DOC_TYPE}"64 data = {}65 for idx, attr in enumerate(ATTRS):66 data[attr] = record[idx]67 res = requests.post(put_item_url, json=data, headers=HEADERS)68 # The 201 status code indicates the documents have been properly indexed69 assert res.status_code == 20170 # allow the cluster to index in the background.71 time.sleep(1)72@pytest.mark.skipif(not is_container_running(), reason="The container is not running")73def test_elasticsearch_io_dataset():74 """Test the functionality of the ElasticsearchIODataset"""75 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(76 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE, headers=HEADERS77 )78 assert issubclass(type(dataset), tf.data.Dataset)79 for item in dataset:80 for attr in ATTRS:81 assert attr in item82@pytest.mark.skipif(not is_container_running(), reason="The container is not running")83def test_elasticsearch_io_dataset_no_auth():84 """Test the functionality of the ElasticsearchIODataset when basic auth is85 required but the associated header is not passed.86 """87 try:88 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(89 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE90 )91 except ConnectionError as e:92 assert str(93 e94 ) == "No healthy node available for the index: {}, please check the cluster config".format(95 INDEX96 )97@pytest.mark.skipif(not is_container_running(), reason="The container is not running")98def test_elasticsearch_io_dataset_batch():99 """Test the functionality of the ElasticsearchIODataset"""100 BATCH_SIZE = 2101 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(102 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE, headers=HEADERS103 ).batch(BATCH_SIZE)104 assert issubclass(type(dataset), tf.data.Dataset)105 for item in dataset:106 for attr in ATTRS:107 assert attr in item108 assert len(item[attr]) == BATCH_SIZE109@pytest.mark.skipif(not is_container_running(), reason="The container is not running")110def test_elasticsearch_io_dataset_training():111 """Test the functionality of the ElasticsearchIODataset by training a112 tf.keras model on the structured data.113 """114 BATCH_SIZE = 2115 dataset = tfio.experimental.elasticsearch.ElasticsearchIODataset(116 nodes=[NODE], index=INDEX, doc_type=DOC_TYPE, headers=HEADERS117 )118 dataset = dataset.map(lambda v: (v, v.pop("survived")))119 dataset = dataset.batch(BATCH_SIZE)120 assert issubclass(type(dataset), tf.data.Dataset)121 feature_columns = []122 # Numeric column123 fare_column = feature_column.numeric_column("fare")124 feature_columns.append(fare_column)125 # Bucketized column126 age = feature_column.numeric_column("age")127 age_buckets = feature_column.bucketized_column(age, boundaries=[10, 30])128 feature_columns.append(age_buckets)129 # Categorical column130 gender = feature_column.categorical_column_with_vocabulary_list(131 "gender", ["Male", "Female"]132 )133 gender_indicator = feature_column.indicator_column(gender)134 feature_columns.append(gender_indicator)135 # Convert the feature columns into a tf.keras layer136 feature_layer = tf.keras.layers.DenseFeatures(feature_columns)137 # Build the model138 model = tf.keras.Sequential(139 [140 feature_layer,141 layers.Dense(128, activation="relu"),142 layers.Dense(128, activation="relu"),143 layers.Dropout(0.1),144 layers.Dense(1),145 ]146 )147 # Compile the model148 model.compile(149 optimizer="adam",150 loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),151 metrics=["accuracy"],152 )153 # train the model154 model.fit(dataset, epochs=5)155@pytest.mark.skipif(not is_container_running(), reason="The container is not running")156def test_cleanup():157 """Clean up the index"""158 delete_index_url = f"{NODE}/{INDEX}"159 res = requests.delete(delete_index_url, headers=HEADERS)...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run localstack automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful