How to use individual_deployment method in localstack

Best Python code snippet using localstack_python

cancer.py

Source:cancer.py Github

copy

Full Screen

1import numpy as np2import pandas as pd3from sklearn import ensemble4from sklearn.model_selection import train_test_split5from sklearn.metrics import accuracy_score, classification_report, confusion_matrix6import joblib78df = pd.read_csv(r"C:\Users\Gauri\Desktop\HealthApp\individual_deployment\data\cancer.csv")9df.drop(df.columns[[0,-1]], axis=1, inplace=True)10# Split the features data and the target 11Xdata = df.drop(['diagnosis'], axis=1)12ydata = df['diagnosis']1314# Encoding the target value 15yenc = np.asarray([1 if c == 'M' else 0 for c in ydata])16cols = ['concave points_mean','area_mean','radius_mean','perimeter_mean','concavity_mean',]17Xdata = df[cols]18print(Xdata.columns)1920X_train, X_test, y_train, y_test = train_test_split(Xdata, yenc, 21 test_size=0.3,22 random_state=43)23print('Shape training set: X:{}, y:{}'.format(X_train.shape, y_train.shape))24print('Shape test set: X:{}, y:{}'.format(X_test.shape, y_test.shape))2526model = ensemble.RandomForestClassifier()27model.fit(X_train, y_train)28y_pred = model.predict(X_test)29print('Accuracy : {}'.format(accuracy_score(y_test, y_pred)))3031clf_report = classification_report(y_test, y_pred)32print('Classification report')33print("---------------------")34print(clf_report)35print("_____________________")36 ...

Full Screen

Full Screen

heart.py

Source:heart.py Github

copy

Full Screen

1import numpy as np2import pandas as pd3from sklearn import ensemble4from sklearn.model_selection import train_test_split5from sklearn.metrics import accuracy_score, classification_report, confusion_matrix6import joblib78df = pd.read_csv("C:\Users\Gauri\Desktop\HealthApp\individual_deployment\data\heart.csv")910categorical_val = []11continous_val = []12for column in df.columns:13 if len(df[column].unique()) <= 10:14 categorical_val.append(column)15 else:16 continous_val.append(column)1718categorical_val.remove('target')19dataset = pd.get_dummies(df, columns = categorical_val)2021cols = ['cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang'] 22X = df[cols]23y = dataset.target2425X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)2627print('Shape training set: X:{}, y:{}'.format(X_train.shape, y_train.shape))28print('Shape test set: X:{}, y:{}'.format(X_test.shape, y_test.shape))2930model = ensemble.RandomForestClassifier()31model.fit(X_train, y_train)32y_pred = model.predict(X_test)33print('Accuracy : {}'.format(accuracy_score(y_test, y_pred)))3435clf_report = classification_report(y_test, y_pred)36print('Classification report')37print("---------------------")38print(clf_report)39print("_____________________")40 ...

Full Screen

Full Screen

liver.py

Source:liver.py Github

copy

Full Screen

1import numpy as np2import pandas as pd3from sklearn import ensemble4from sklearn.model_selection import train_test_split5from sklearn.metrics import accuracy_score, classification_report, confusion_matrix6import joblib78patients=pd.read_csv('C:\Users\Gauri\Desktop\HealthApp\individual_deployment\data\indian_liver_patient.csv')9patients['Gender']=patients['Gender'].apply(lambda x:1 if x=='Male' else 0)10patients=patients.fillna(0.94)1112X=patients[['Total_Bilirubin', 'Direct_Bilirubin',13 'Alkaline_Phosphotase', 'Alamine_Aminotransferase',14 'Total_Protiens', 'Albumin', 'Albumin_and_Globulin_Ratio']]15y=patients['Dataset']1617X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=123)1819print('Shape training set: X:{}, y:{}'.format(X_train.shape, y_train.shape))20print('Shape test set: X:{}, y:{}'.format(X_test.shape, y_test.shape))2122model = ensemble.RandomForestClassifier()23model.fit(X_train, y_train)24y_pred = model.predict(X_test)25print('Accuracy : {}'.format(accuracy_score(y_test, y_pred)))2627clf_report = classification_report(y_test, y_pred)28print('Classification report')29print("---------------------")30print(clf_report)31print("_____________________")32 ...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run localstack automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful