Best Python code snippet using localstack_python
hrnet.py
Source:hrnet.py
...134 # self.bn2 = tf.keras.layers.BatchNormalization(momentum=0.1, epsilon=1e-5)135 # self.layer1 = make_bottleneck_layer(filter_num=64, blocks=4)136 # self.transition1 = self.__make_transition_layer(previous_branches_num=1,137 # previous_channels=[256],138 # current_branches_num=self.config_params.get_stage("s2")[1],139 # current_channels=self.config_params.get_stage("s2")[0])140 # self.stage2 = self.__make_stages("s2", self.config_params.get_stage("s2")[0])141 # self.transition2 = self.__make_transition_layer(previous_branches_num=self.config_params.get_stage("s2")[1],142 # previous_channels=self.config_params.get_stage("s2")[0],143 # current_branches_num=self.config_params.get_stage("s3")[1],144 # current_channels=self.config_params.get_stage("s3")[0])145 # self.stage3 = self.__make_stages("s3", self.config_params.get_stage("s3")[0])146 # self.transition3 = self.__make_transition_layer(previous_branches_num=self.config_params.get_stage("s3")[1],147 # previous_channels=self.config_params.get_stage("s3")[0],148 # current_branches_num=self.config_params.get_stage("s4")[1],149 # current_channels=self.config_params.get_stage("s4")[0])150 # self.stage4 = self.__make_stages("s4", self.config_params.get_stage("s4")[0], False)151 # self.conv3 = tf.keras.layers.Conv2D(filters=self.config_params.num_of_joints,152 # kernel_size=self.config_params.conv3_kernel,153 # strides=1,154 # padding="same")155 # def __choose_config(self, config_name):156 # return get_config_params(config_name)157 def __make_stages(self, inputs, stage_name, in_channels, multi_scale_output=True):158 stage_info = self.config_params.get_stage(stage_name)159 channels, num_branches, num_modules, block, num_blocks, fusion_method = stage_info160 fusion = []161 for i in range(num_modules):162 if not multi_scale_output and i == num_modules - 1:163 reset_multi_scale_output = False164 else:165 reset_multi_scale_output = True166 module_list = HighResolutionModule(num_branches=num_branches,167 num_in_channels=in_channels,168 num_channels=channels,169 block=block,170 num_blocks=num_blocks,171 fusion_method=fusion_method,172 multi_scale_output=reset_multi_scale_output)173 fusion = module_list.call(inputs)174 return fusion175 @staticmethod176 def __make_transition_layer(x, previous_branches_num, previous_channels, current_branches_num, current_channels):177 transition_layers = []178 for i in range(current_branches_num):179 if i < previous_branches_num:180 if current_channels[i] != previous_channels[i]:181 temp = _conv2d_layer(name="trans1"+str(i), input=x, filters=current_channels[i], kernel_size=3,182 strides=1, padding="SAME", use_bias=False)183 temp = _batch_norm(inputs=temp, momentum=0.1, epsilon=1e-5)184 transition_layers.append(temp)185 # transition_layers.append(186 # tf.keras.Sequential([187 # tf.keras.layers.Conv2D(filters=current_channels[i], kernel_size=(3, 3), strides=1, padding="same", use_bias=False),188 # tf.keras.layers.BatchNormalization(momentum=0.1, epsilon=1e-5),189 # tf.keras.layers.ReLU()190 # ])191 # )192 else:193 transition_layers.append(x)194 else:195 down_sampling_layers = []196 for j in range(i + 1 - previous_branches_num):197 in_channels = previous_channels[-1],198 out_channels = current_channels[i] if j == i - previous_branches_num else in_channels199 with flow.scope.namespace('transition_layers_'+str(j)):200 temp = _conv2d_layer(name="fuse11", input=x, filters=out_channels,201 kernel_size=3, strides=2, padding="SAME", use_bias=False)202 temp = _batch_norm(inputs=temp, momentum=0.1, epsilon=1e-5)203 temp = flow.nn.relu(temp)204 down_sampling_layers.append(temp)205 # down_sampling_layers.append(206 # tf.keras.Sequential([207 # tf.keras.layers.Conv2D(filters=out_channels, kernel_size=(3, 3), strides=2,208 # padding="same", use_bias=False),209 # tf.keras.layers.BatchNormalization(momentum=0.1, epsilon=1e-5),210 # tf.keras.layers.ReLU()211 # ])212 # )213 transition_layers.append(down_sampling_layers)214 return transition_layers215 def call(self, inputs, training=None):#mask=None216 x = _conv2d_layer(name="conv1", input=inputs, filters=64,217 kernel_size=3, strides=2, padding="SAME", use_bias=False)218 # x = self.conv1(inputs)219 x = _batch_norm(inputs=x, momentum=0.1, epsilon=1e-5)220 # x = self.bn1(x, training=training)221 x = flow.nn.relu(x)222 # x = tf.nn.relu(x)223 x = _conv2d_layer(name="conv2", input=x, filters=64,224 kernel_size=3, strides=2, padding="SAME", use_bias=False)225 # x = self.conv2(x)226 x = _batch_norm(inputs=x, momentum=0.1, epsilon=1e-5)227 # x = self.bn2(x, training=training)228 x = flow.nn.relu(x)229 # x = tf.nn.relu(x)230 x = make_bottleneck_layer(x, training=training, filter_num=64, blocks=4)231 # x = self.layer1(x, training=training)232 feature_list = []233 for i in range(self.config_params.get_stage("s2")[1]):234 result = self.__make_transition_layer(x=x,235 previous_branches_num=1,236 previous_channels=[256],237 current_branches_num=self.config_params.get_stage("s2")[1],238 current_channels=self.config_params.get_stage("s2")[0])239 if result[i] is not None:240 feature_list.append(result[i])241 # if self.transition1[i] is not None:242 # feature_list.append(self.transition1[i](x, training=training))243 else:244 feature_list.append(x)245 y_list = self.__make_stages(feature_list, "s2", self.config_params.get_stage("s2")[0])246 # y_list = self.stage2(feature_list, training=training)247 feature_list = []248 for i in range(self.config_params.get_stage("s3")[1]):249 result = self.__make_transition_layer(x=y_list[-1],250 previous_branches_num=self.config_params.get_stage("s2")[1],251 previous_channels=self.config_params.get_stage("s2")[0],252 current_branches_num=self.config_params.get_stage("s3")[1],253 current_channels=self.config_params.get_stage("s3")[0])254 if result[i] is not None:255 feature_list.append(result[i])256 # if self.transition2[i] is not None:257 # feature_list.append(self.transition2[i](y_list[-1], training=training))258 else:259 feature_list.append(y_list[i])260 y_list = self.__make_stages(feature_list, "s3", self.config_params.get_stage("s3")[0])261 # y_list = self.stage3(feature_list, training=training)262 feature_list = []263 for i in range(self.config_params.get_stage("s4")[1]):264 result = self.__make_transition_layer(x=y_list[-1],265 previous_branches_num=self.config_params.get_stage("s3")[1],266 previous_channels=self.config_params.get_stage("s3")[0],267 current_branches_num=self.config_params.get_stage("s4")[1],268 current_channels=self.config_params.get_stage("s4")[0])269 if result[i] is not None:270 feature_list.append(result[i])271 # for i in range(self.config_params.get_stage("s4")[1]):272 # if self.transition3[i] is not None:273 # feature_list.append(self.transition3[i](y_list[-1], training=training))274 else:275 feature_list.append(y_list[i])276 y_list = self.__make_stages(feature_list, "s4", self.config_params.get_stage("s4")[0], False)277 # y_list = self.stage4(feature_list, training=training)278 outputs = _conv2d_layer(name="conv3",279 input=y_list[0],280 filters=self.config_params.num_of_joints,281 kernel_size=self.config_params.conv3_kernel,282 strides=1,283 padding="SAME")284 # outputs = self.conv3(y_list[0])...
test_dungeon.py
Source:test_dungeon.py
...21 d = dungeon.Dungeon(hero)22 d.mk_next_stage.assert_called_once()23def test_dungeon_init__hero_exists_on_stage(hero):24 d = dungeon.Dungeon(hero)25 m = d.get_stage()26 assert any([True for e in m.entities if e.has_comp('human')])27def test_dungeon_init__move_hero_called(mocker, hero):28 mocker.patch.object(dungeon.Dungeon, 'move_hero')29 d = dungeon.Dungeon(hero)30 d.move_hero.assert_called_once()31def test_dungeon_init__populate_called(mocker, hero):32 mocker.patch.object(stages.Stage, 'populate')33 d = dungeon.Dungeon(hero)34 m = d.get_stage()35 m.populate.assert_called_once()36def test_get_stage__1_level(hero):37 d = dungeon.Dungeon(hero)38 m = d.get_stage()39 assert m.dungeon_lvl == d.current_stage + 140def test_get_stage__2_stages(hero):41 d = dungeon.Dungeon(hero)42 d.mk_next_stage()43 m = d.get_stage()44 assert m.dungeon_lvl == d.current_stage + 145 d.current_stage = 146 m = d.get_stage()47 assert m.dungeon_lvl == d.current_stage + 148# def test_place_hero(, level):49 # Should this take the hero as a parameter?50 # Test that the hero is put somewhere51def test_mk_next_stage__stages_increases(hero):52 d = dungeon.Dungeon(hero)53 assert len(d.stages) == 154 d.mk_next_stage()55 assert len(d.stages) == 256def test_mk_next_stage__stages_are_numbered_correctly(hero):57 d = dungeon.Dungeon(hero)58 assert d.stages[0].dungeon_lvl == 159 d.mk_next_stage()60 assert d.stages[1].dungeon_lvl == 261def test_hero_at_stairs__valid_returns_True(hero):62 d = dungeon.Dungeon(hero)63 down_stair = d.get_stage().find_stair('>')64 d.hero.x, d.hero.y = down_stair.x, down_stair.y65 assert d.hero_at_stairs('>')66def test_hero_at_stairs__invalid_returns_False(hero):67 d = dungeon.Dungeon(hero)68 assert d.hero_at_stairs('>') is False69def test_hero_at_stairs__starting_upstair_returns_True(hero):70 d = dungeon.Dungeon(hero)71 # Hero starts on an upstair, so this should be True.72 assert d.hero_at_stairs('<')73def test_move_downstairs__not_on_down_stair_returns_False(hero):74 d = dungeon.Dungeon(hero)75 d.mk_next_stage()76 result = d.move_downstairs()77 assert result is False78def test_move_downstairs__hero_moved_to_next_upstair(hero):79 d = dungeon.Dungeon(hero)80 down_stair = d.get_stage().find_stair('>')81 d.hero.x, d.hero.y = down_stair.x, down_stair.y82 d.mk_next_stage()83 d.move_downstairs()84 up_stair = d.get_stage().find_stair('<')85 assert d.hero.x == up_stair.x86 assert d.hero.y == up_stair.y87def test_move_downstairs__dungeon_lvl_incremented(hero):88 d = dungeon.Dungeon(hero)89 prev_lvl = d.current_stage90 down_stair = d.get_stage().find_stair('>')91 d.hero.x, d.hero.y = down_stair.x, down_stair.y92 d.mk_next_stage()93 d.move_downstairs()94 assert d.current_stage == prev_lvl + 195def test_move_downstairs__success_returns_True(hero):96 d = dungeon.Dungeon(hero)97 down_stair = d.get_stage().find_stair('>')98 d.hero.x, d.hero.y = down_stair.x, down_stair.y99 d.mk_next_stage()100 assert d.move_downstairs()101def test_move_upstairs__not_on_up_stair_returns_False(hero):102 d = dungeon.Dungeon(hero)103 down_stair = d.get_stage().find_stair('>')104 # Move hero to downstair (won't be on upstair)105 d.hero.x, d.hero.y = down_stair.x, down_stair.y106 assert d.move_upstairs() is False107def test_move_upstairs__hero_moved_to_prev_downstair(hero):108 d = dungeon.Dungeon(hero)109 down_stair = d.get_stage().find_stair('>')110 d.hero.x, d.hero.y = down_stair.x, down_stair.y111 d.mk_next_stage()112 # Move the hero downstairs first113 d.move_downstairs()114 # Hero moves back to previous down-stair115 d.move_upstairs()116 assert d.hero.x == down_stair.x117 assert d.hero.y == down_stair.y118def test_move_upstairs__success_returns_True(hero):119 d = dungeon.Dungeon(hero)120 down_stair = d.get_stage().find_stair('>')121 d.hero.x, d.hero.y = down_stair.x, down_stair.y122 d.mk_next_stage()123 d.move_downstairs()124 assert d.move_upstairs()125# def test_move_upstairs__when_at_the_top_lvl():126 # Return False?127# Wait on this test - might want to remove some calls from Dungeon init128# def test_move_hero__hero_not_placed_yet(hero):129 # d = dungeon.Dungeon(hero)130def test_move_hero__to_wall_returns_False(hero):131 d = dungeon.Dungeon(hero)132 m = stages.Stage(10, 10, 2)133 d.stages.append(m)134 assert d.move_hero(dest_stage_index=1, dest_x=0, dest_y=0) is False135def test_move_hero__to_occupied_spot_returns_False(hero):136 d = dungeon.Dungeon(hero)137 rnd_monster = [e for e in d.get_stage().entities if e.has_comp('ai')].pop()138 dest_x = rnd_monster.x139 dest_y = rnd_monster.y140 assert d.move_hero(dest_stage_index=0, dest_x=dest_x, dest_y=dest_y) is False141def test_move_hero__same_floor_returns_True(hero):142 d = dungeon.Dungeon(hero)143 dest_x, dest_y = d.get_stage().get_random_open_spot()144 assert d.move_hero(dest_stage_index=0, dest_x=dest_x, dest_y=dest_y)145def test_move_hero__same_floor_hero_xy_updated(hero):146 d = dungeon.Dungeon(hero)147 dest_x, dest_y = d.get_stage().get_random_open_spot()148 d.move_hero(dest_stage_index=0, dest_x=dest_x, dest_y=dest_y)149 assert d.hero.x == dest_x150 assert d.hero.y == dest_y151def test_move_hero__same_floor_lvl_remains_same(hero):152 d = dungeon.Dungeon(hero)153 d_lvl = d.current_stage154 dest_x, dest_y = d.get_stage().get_random_open_spot()155 d.move_hero(dest_stage_index=0, dest_x=dest_x, dest_y=dest_y)156 assert d.current_stage == d_lvl157def test_move_hero__diff_floor_returns_True(hero):158 dest_stage_index = 1159 d = dungeon.Dungeon(hero)160 d.mk_next_stage()161 dest_x, dest_y = d.stages[dest_stage_index].get_random_open_spot()162 assert d.move_hero(dest_stage_index=dest_stage_index, dest_x=dest_x, dest_y=dest_y)163def test_move_hero__diff_floor_hero_xy_updated(hero):164 dest_stage_index = 1165 d = dungeon.Dungeon(hero)166 d.mk_next_stage()167 dest_x, dest_y = d.stages[dest_stage_index].get_random_open_spot()168 d.move_hero(dest_stage_index=dest_stage_index, dest_x=dest_x, dest_y=dest_y)...
models.py
Source:models.py
...8POSTTEST = "posttest"9class PolicyworldWork(object):10 def __init__(self, stages):11 self.stages = stages12 def get_stage(self, name):13 for s in self.stages:14 if s.name == name:15 return s16 return None17 18 def get_time(self):19 t = 020 for s in self.stages:21 t = t + s.get_minutes()22 return t23 24 def to_grade(self):25 #return "%s %s %s %s %s %s time:%s" % (self._passed_to_string(self.get_stage(PRETEST).passed),26 # self._passed_to_string(self.get_stage(PROBLEM_1).passed),27 # self._passed_to_string(self.get_stage(PROBLEM_2).passed),28 # self._passed_to_string(self.get_stage(PROBLEM_3).passed),29 # self._passed_to_string(self.get_stage(DEBATETEST).passed),30 # self._passed_to_string(self.get_stage(POSTTEST).passed),31 # self.get_time())32 return "Pre:%s Post1:%s Post2:%s Time:%s" % (self._grade_stage(PRETEST),33 self._grade_stage(DEBATETEST),34 self._grade_stage(POSTTEST),35 self.get_time())36 def _grade_stage(self, stage_name):37 s = self.get_stage(stage_name)38 if s == None:39 return "?"40 41 if s.passed:42 return '+'43 else:44 return '-'45 46class StageGrade(object):47 def __init__(self, name, attempt, completed, passed, msec):48 self.name = name49 self.attempt = attempt50 self.completed = completed51 self.passed = passed...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!