Best Python code snippet using localstack_python
test_msimanipulations.py
Source:test_msimanipulations.py
...12 def setUp(self):13 self.msi = helpers.getFakeMsi()14 self.specialmsi = helpers.getFakeMsi()15 # set one pixel to special values16 self.specialValue = np.arange(self.specialmsi.get_image().shape[-1]) * 217 self.specialmsi.get_image()[2, 2, :] = self.specialValue18 # create a segmentation which sets all elements to invalid but the19 # one pixel with the special value20 self.segmentation = np.zeros(self.specialmsi.get_image().shape[0:-1])21 self.segmentation[2, 2] = 122 def tearDown(self):23 pass24 def test_apply_segmentation(self):25 mani.apply_segmentation(self.specialmsi, self.segmentation)26 validImageEntries = self.specialmsi.get_image() \27 [~self.specialmsi.get_image().mask]28 np.testing.assert_equal(validImageEntries, self.specialValue,29 "image has been correctly segmented")30 def test_calculate_mean_spectrum(self):31 mani.calculate_mean_spectrum(self.specialmsi)32 np.testing.assert_equal(np.array([0.96, 2., 3.04, 4.08, 5.12]),33 self.specialmsi.get_image(),34 "mean spectrum is correctly calculated on image with " +35 "no mask applied")36 def test_calculate_mean_spectrum_masked_image(self):37 mani.apply_segmentation(self.specialmsi, self.segmentation)38 mani.calculate_mean_spectrum(self.specialmsi)39 np.testing.assert_equal(self.specialValue, self.specialmsi.get_image(),40 "mean spectrum is correctly calculated on image with " +41 "mask applied")42 def test_interpolate(self):43 # create not sorted new wavelengths44 newWavelengths = np.array([4.0, 2.5, 3.5, 1.5])45 mani.interpolate_wavelengths(self.msi, newWavelengths)46 np.testing.assert_equal(newWavelengths, self.msi.get_wavelengths(),47 "wavelengths correctly updated")48 # check if first image pixel was correctly calculated49 # (hopefully true for all then)50 np.testing.assert_equal(np.array([2.0, 3.5, 2.5, 4.5]),51 self.msi.get_image()[0, 0, :],52 "image elements correctly interpolated")53 def test_normalize_integration_times(self):54 old_shape = self.msi.get_image().shape55 integration_times = np.array([1., 2., 3., 4., 5.])56 self.msi.add_property({'integration times': integration_times})57 mani.normalize_integration_times(self.msi)58 np.testing.assert_equal(self.msi.get_image()[1, 3, :],59 np.ones_like(integration_times),60 "normalized integration times")61 np.testing.assert_equal(self.msi.get_properties()['integration times'],62 np.ones_like(integration_times),63 "integration time property set to ones")64 self.assertEqual(self.msi.get_image().shape, old_shape,65 "shape did not change from normalizing")66 def test_normalize_integration_times_none_given(self):67 msi_copy = copy.deepcopy(self.msi)68 mani.normalize_integration_times(msi_copy)69 np.testing.assert_equal(msi_copy.get_image(), self.msi.get_image(),70 "nothing change by normalizing without" + \71 "integration times given")72 def test_dark_correction(self):73 desired_image_data = copy.copy(self.msi.get_image())74 desired_image_data -= 175 dark = copy.copy(self.msi)76 dark.set_image(np.ones_like(dark.get_image()))77 mani.dark_correction(self.msi, dark)78 np.testing.assert_equal(self.msi.get_image(),79 desired_image_data,80 "dark image correctly accounted for")81 np.testing.assert_equal(dark.get_image(),82 np.ones_like(dark.get_image()),83 "dark image unchanged by dark correction")84 def test_dark_correction_with_single_value(self):85 desired_image_data = copy.copy(self.specialmsi.get_image())86 desired_image_data -= 187 dark = copy.copy(self.specialmsi)88 dark.set_image(np.ones_like(dark.get_image()))89 mani.calculate_mean_spectrum(dark)90 mani.dark_correction(self.specialmsi, dark)91 np.testing.assert_equal(self.specialmsi.get_image(),92 desired_image_data,93 "dark image correctly accounted for from singular dark value")94 np.testing.assert_equal(dark.get_image(),95 np.ones_like(dark.get_image()),96 "dark image unchanged by dark correction")97 def test_flatfield_correction(self):98 desired_image_data = np.ones_like(self.specialmsi.get_image())99 desired_image_data[2, 2, 0] = np.nan100 mani.flatfield_correction(self.specialmsi, self.specialmsi)101 np.testing.assert_equal(self.specialmsi.get_image(),102 desired_image_data,103 "correct image by itself should lead to only 1s ")104 def test_flatfield_correction_differing_integration_times(self):105 MSI_INTEGRATION_TIME = 3.0106 FLATFIELD_INTEGRATION_TIME = 2.0107 desired_image_data = np.ones_like(self.specialmsi.get_image()) * \108 FLATFIELD_INTEGRATION_TIME / MSI_INTEGRATION_TIME109 desired_image_data[2, 2, 0] = np.nan110 self.specialmsi.add_property({"integration times":111 np.ones_like(112 self.specialmsi.get_image()[0, 0, :])113 * MSI_INTEGRATION_TIME})114 flatfield = copy.deepcopy(self.specialmsi)115 flatfield.add_property({"integration times":116 np.ones_like(117 flatfield.get_image()[0, 0, :])118 * FLATFIELD_INTEGRATION_TIME})119 # for testing if flatfield does not changed by correction we copy it120 flatfield_copy = copy.deepcopy(flatfield)121 mani.flatfield_correction(self.specialmsi, flatfield_copy)122 np.testing.assert_almost_equal(self.specialmsi.get_image(),123 desired_image_data, 15,124 "corrected image is a division of integration times")125 np.testing.assert_equal(flatfield.get_image(),126 flatfield_copy.get_image(),127 "flatfield doesn't change by correction")128 def test_flatfield_correction_with_single_value(self):129 desired_image_data = np.ones_like(self.msi.get_image())130 flatfield = copy.copy(self.msi)131 mani.calculate_mean_spectrum(flatfield)132 unchanged_flatfield = copy.deepcopy(flatfield)133 mani.flatfield_correction(self.msi, flatfield)134 np.testing.assert_equal(self.msi.get_image(),135 desired_image_data,136 "flatfield correctly accounted for from singular reference value")137 np.testing.assert_equal(flatfield, unchanged_flatfield,138 "flatfield not changed by algorithm")139 def test_image_correction(self):140 dark = copy.copy(self.msi)141 dark.set_image(np.ones_like(dark.get_image()) * 0.5)142 flatfield = copy.copy(self.msi)143 flatfield_copy = copy.deepcopy(flatfield)144 dark_copy = copy.deepcopy(dark)145 mani.image_correction(self.msi, flatfield, dark)146 np.testing.assert_equal(flatfield.get_image(),147 flatfield_copy.get_image(),148 "image correction didn't change flatfield")149 np.testing.assert_equal(dark.get_image(), dark_copy.get_image(),150 "image correction didn't change dark image")151 np.testing.assert_almost_equal(self.msi.get_image(),152 np.ones_like(self.msi.get_image()),...
constants.py
Source:constants.py
...6bg_color = 200, 200, 2007screen = pygame.display.set_mode(size, pygame.FULLSCREEN)8pygame.display.set_caption("Quad Mayhem")9DBase('images.db')10normal_gas = Table('images').get_image(1)[1].convert()11toxic_gas = Table('images').get_image(2)[2].convert()12play_btn = Table('images').get_image(3)[3].convert()13quit_btn = Table('images').get_image(4)[4].convert()14ffa_btn = Table('images').get_image(5)[5].convert()15ctf_btn = Table('images').get_image(6)[6].convert()16tdm_btn = Table('images').get_image(7)[7].convert()17pause_btn = Table('images').get_image(8)[8].convert()18pause = Table('images').get_image(9)[9].convert()19hero_choicing = Table('images').get_image(10)[10].convert()20start_btn = Table('images').get_image(11)[11].convert()21not_in_btn = Table('images').get_image(12)[12].convert()22def_btn = Table('images').get_image(13)[13].convert()23attack_btn = Table('images').get_image(14)[14].convert()24not_in_btn_light = Table('images').get_image(15)[15].convert()25def_btn_light = Table('images').get_image(16)[16].convert()26attack_btn_light = Table('images').get_image(17)[17].convert()27wasd = Table('images').get_image(18)[18].convert()28arrows = Table('images').get_image(19)[19].convert()29gamepad1 = Table('images').get_image(20)[20].convert()30gamepad2 = Table('images').get_image(21)[21].convert()31wasd_light = Table('images').get_image(22)[22].convert()32arrows_light = Table('images').get_image(23)[23].convert()33gamepad1_light = Table('images').get_image(24)[24].convert()34gamepad2_light = Table('images').get_image(25)[25].convert()35control_choice = Table('images').get_image(26)[26].convert()36continue_but = Table('images').get_image(27)[27].convert()37hero_choicing2 = Table('images').get_image(28)[28].convert()38in_but = Table('images').get_image(29)[29].convert()39in_but_light = Table('images').get_image(30)[30].convert()40machine_gun = Table('images').get_image(31)[31].convert()41sub_machine_gun = Table('images').get_image(32)[32].convert()42semi_automatic_sniper_rifle = Table('images').get_image(33)[33].convert()43sniper_rifle = Table('images').get_image(58)[58].convert()44sniper_rifle_bullet = Table('images').get_image(59)[59].convert()45sub_machine_gun_bullet = Table('images').get_image(60)[60].convert()46semiauto_machinegun_bullet = Table('images').get_image(61)[61].convert()47portal = Table('images').get_image(62)[62].convert()48platform = Table('images').get_image(63)[63].convert()49team_flag = Table('images').get_image(64)[64].convert()50ammo = Table('images').get_image(65)[65].convert()51healing_box = Table('images').get_image(66)[66].convert()52jasper_protect = Table('images').get_image(67)[67].convert()53vincent_poison_ray = Table('images').get_image(68)[68].convert()54turret_of_guido = Table('images').get_image(69)[69].convert()55turret_of_guido_bullet = Table('images').get_image(70)[70].convert()56ffa_level = Table('images').get_image(71)[71].convert()57ctf_level = Table('images').get_image(72)[72].convert()58items_spawner = Table('images').get_image(73)[73].convert()59door_open = Table('images').get_image(74)[74].convert()60door_closed = Table('images').get_image(75)[75].convert()61bg = Table('images').get_image(76)[76].convert()62menu_bg = Table('images').get_image(77)[77].convert()63cur = Table('images').get_image(78)[78].convert()64mch1 = Table('images').get_image(79)[79].convert()65mch2 = Table('images').get_image(80)[80].convert()66mch3 = Table('images').get_image(81)[81].convert()67jasper_animation = list()68adam_animation = list()69vincent_animation = list()70guido_animation = list()71for i in range(35, 40):72 a = Table('images').get_image(i)[i].convert()73 a.set_colorkey('black')74 jasper_animation.append(a)75for i in range(41, 46):76 a = Table('images').get_image(i)[i].convert()77 a.set_colorkey('black')78 adam_animation.append(a)79for i in range(47, 52):80 a = Table('images').get_image(i)[i].convert()81 a.set_colorkey('black')82 vincent_animation.append(a)83for i in range(53, 58):84 a = Table('images').get_image(i)[i].convert()85 a.set_colorkey('black')86 guido_animation.append(a)87normal_gas.set_colorkey('white')88toxic_gas.set_colorkey('white')89pause_btn.set_colorkey('white')90machine_gun.set_colorkey('black')91sub_machine_gun.set_colorkey('black')92semi_automatic_sniper_rifle.set_colorkey('black')93sniper_rifle.set_colorkey('black')94ffa_level.set_colorkey('black')95ctf_level.set_colorkey('black')96turret_of_guido.set_colorkey('black')97vincent_poison_ray.set_colorkey('black')98healing_box.set_colorkey('black')...
cat.py
Source:cat.py
...9 font=("TkDefaultFont",13,"bold"))10log.update(idle=True)11sprites = {12 "default" : [13 base.get_image("cat/c1.png"),14 base.get_image("cat/c2.png"),15 base.get_image("cat/c3.png"),16 base.get_image("cat/c4.png"),17 base.get_image("cat/c5.png"),18 base.get_image("cat/c6.png"),19 base.get_image("cat/c7.png"),20 base.get_image("cat/c8.png"),21 base.get_image("cat/c9.png"),22 base.get_image("cat/c10.png"),23 base.get_image("cat/c11.png"),24 base.get_image("cat/c12.png"),25 ],26 "staying" : [27 base.get_image("cat/b1.png"),28 base.get_image("cat/b2.png"),29 base.get_image("cat/b3.png"),30 base.get_image("cat/b4.png"),31 base.get_image("cat/b5.png"),32 base.get_image("cat/b6.png"),33 ],34 "run1" : [35 base.get_image("cat/a1.png"),36 base.get_image("cat/a2.png"),37 base.get_image("cat/a3.png"),38 base.get_image("cat/a4.png"),39 base.get_image("cat/a5.png"),40 base.get_image("cat/a6.png"),41 base.get_image("cat/a7.png"),42 base.get_image("cat/a8.png"),43 base.get_image("cat/a9.png"),44 base.get_image("cat/a10.png"),45 base.get_image("cat/a11.png"),46 base.get_image("cat/a12.png"),47 ],48 "run2" : [49 base.get_image("cat/d1.png"),50 base.get_image("cat/d2.png"),51 base.get_image("cat/d3.png"),52 base.get_image("cat/d4.png"),53 base.get_image("cat/d5.png"),54 base.get_image("cat/d6.png"),55 base.get_image("cat/d7.png"),56 base.get_image("cat/d8.png"),57 base.get_image("cat/d9.png"),58 base.get_image("cat/d10.png"),59 base.get_image("cat/d11.png"),60 base.get_image("cat/d12.png"),61 base.get_image("cat/d13.png"),62 ]63}64log.style.update(text="lk")65log.update(idle=True)66CAT = game.Sprite(ca, top.get_width()/2,67 top.get_height()/2, tk_photo=sprites["default"][0])68CAT.states = sprites69def _(*args):70 if top.kmap.get("Left",False):71 CAT.to_state("default")72 CAT.next()73 elif top.kmap.get("Right",False):74 CAT.to_state("run1")75 CAT.next()...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!