How to use export_image method in localstack

Best Python code snippet using localstack_python

analysis_figure_histogram_logpx_bins.py

Source:analysis_figure_histogram_logpx_bins.py Github

copy

Full Screen

...157def tensor_to_image(obs: torch.Tensor) -> Image:158 return Image.fromarray(159 np.uint8(255 * obs.permute(1, 2, 0).squeeze().numpy())160 )161def export_image(sd: SplitDataset, idx: int, output_dir, relpath=False) -> str:162 obs = sd.get_item_by_index(idx)[0]163 img = tensor_to_image(obs)164 filename = f"{sd.name}_{idx}.png"165 pth = os.path.join(output_dir, filename)166 img.save(pth)167 return filename if relpath else pth168def random_satisfying(*args, size=1):169 first = args[0]170 assert isinstance(first, np.ndarray)171 init = np.ones_like(first, dtype=bool)172 cond = reduce(np.logical_and, args, init)173 indices = np.where(cond)[0]174 return np.random.choice(indices, size=size, replace=False)175def main():176 args = parse_args()177 np.random.seed(args.seed if args.seed else np.random.randint(10000))178 results = np.load(args.input, allow_pickle=True)179 metadata = results["metadata"][()]180 dataset = metadata["dataset"]181 root_seed = metadata["seed"]182 sd = SplitDataset(dataset, root_seed, params={"resize_64": True})183 outdir = args.outdir if args.outdir else os.path.dirname(args.output)184 relpath = args.outdir is None185 U = results["U"][:, -1]186 M = results["M"][:, -1]187 q = 0.95188 if dataset == "CelebA":189 binwidth = 500190 U_min = -17_000191 U_max = -11_000192 y_max = 60_000193 xticks = list(range(U_min, U_max + 1000, 1000))194 yticks = ["0", "20k", "40k", "60k"]195 legend_pos = "north east"196 elif dataset == "BinarizedMNIST" and metadata["learning_rate"] == 1e-3:197 binwidth = 10198 U_min = -150199 U_max = -30200 y_max = 16000201 xticks = list(range(U_min, U_max + 10, 20))202 yticks = ["0", "4k", "8k", "12k", "16k"]203 legend_pos = "north east"204 elif dataset == "BinarizedMNIST" and metadata["learning_rate"] == 1e-4:205 binwidth = 10206 U_min = -160207 U_max = -30208 y_max = 15000209 xticks = list(range(U_min, U_max + 10, 20))210 yticks = ["0", "5k", "10k", "15k"]211 legend_pos = "north east"212 else:213 raise NotImplementedError214 n_bins = (U_max - U_min) // binwidth + 1215 bins = (216 [-float("inf")]217 + [U_min + binwidth * i for i in range(n_bins)]218 + [float("inf")]219 )220 heights_reg = []221 heights_high = []222 midpoints = []223 for lb, ub in zip(bins[:-1], bins[1:]):224 midpoints.append(ub - binwidth / 2)225 in_bin = np.logical_and(U > lb, U <= ub)226 count_reg = np.sum(np.logical_and(in_bin, M <= np.quantile(M, q)))227 count_high = np.sum(np.logical_and(in_bin, M > np.quantile(M, q)))228 heights_reg.append(count_reg)229 heights_high.append(count_high)230 midpoints[-1] = midpoints[-2] + binwidth231 heights_reg = np.array(heights_reg)232 heights_high = np.array(heights_high)233 midpoints = np.array(midpoints)234 images = {}235 bottom_lines = []236 top_lines = []237 if dataset == "CelebA":238 xpos = U_min239 ypos = 19_000240 # Low logprob, low mem241 idx1, idx2 = random_satisfying(242 U < U_min, M < np.quantile(M, 0.5), size=2243 )244 pth1 = export_image(sd, idx1, outdir, relpath=relpath)245 pth2 = export_image(sd, idx2, outdir, relpath=relpath)246 images[pth1] = dict(247 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]248 )249 images[pth2] = dict(250 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]251 )252 # Low logprob, high mem253 idx1, idx2 = random_satisfying(254 U < U_min, M > np.quantile(M, 0.999), size=2255 )256 pth1 = export_image(sd, idx1, outdir, relpath=relpath)257 pth2 = export_image(sd, idx2, outdir, relpath=relpath)258 images[pth1] = dict(259 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]260 )261 images[pth2] = dict(262 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]263 )264 bottom_lines.append([(U_min - binwidth / 2, 4000), (U_min, 18_500)])265 ###266 ###267 xpos = -16_250268 # Med low log prob, low mem (1)269 idx1, idx2 = random_satisfying(270 U < -15_000, U > -15_500, M < np.quantile(M, 0.1), size=2271 )272 pth1 = export_image(sd, idx1, outdir, relpath=relpath)273 pth2 = export_image(sd, idx2, outdir, relpath=relpath)274 images[pth1] = dict(275 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]276 )277 images[pth2] = dict(278 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]279 )280 # Med low log prob, high mem (1)281 idx1, idx2 = random_satisfying(282 U < -15_000, U > -15_500, M > np.quantile(M, 0.999), size=2283 )284 pth1 = export_image(sd, idx1, outdir, relpath=relpath)285 pth2 = export_image(sd, idx2, outdir, relpath=relpath)286 images[pth1] = dict(287 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]288 )289 images[pth2] = dict(290 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]291 )292 bottom_lines.append([(-15_000 - binwidth / 2, 5000), (xpos, 18_500)])293 ###294 ###295 xpos = -15_500296 # Central log prob, low mem (1)297 idx1, idx2 = random_satisfying(298 U < -14_000, U > -14_500, M < np.quantile(M, 0.1), size=2299 )300 pth1 = export_image(sd, idx1, outdir, relpath=relpath)301 pth2 = export_image(sd, idx2, outdir, relpath=relpath)302 images[pth1] = dict(303 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]304 )305 images[pth2] = dict(306 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]307 )308 # Central log prob, high mem (1)309 idx1, idx2 = random_satisfying(310 U < -14_000, U > -14_500, M > np.quantile(M, 0.999), size=2311 )312 pth1 = export_image(sd, idx1, outdir, relpath=relpath)313 pth2 = export_image(sd, idx2, outdir, relpath=relpath)314 images[pth1] = dict(315 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]316 )317 images[pth2] = dict(318 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]319 )320 bottom_lines.append([(-14_250, 14_000), (xpos, 18_500)])321 ###322 ###323 xpos = -14_750324 # Central log prob, low mem (1)325 idx1, idx2 = random_satisfying(326 U < -13_000, U > -13_500, M < np.quantile(M, 0.1), size=2327 )328 pth1 = export_image(sd, idx1, outdir, relpath=relpath)329 pth2 = export_image(sd, idx2, outdir, relpath=relpath)330 images[pth1] = dict(331 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]332 )333 images[pth2] = dict(334 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]335 )336 # Central log prob, high mem (1)337 idx1, idx2 = random_satisfying(338 U < -13_000, U > -13_500, M > np.quantile(M, 0.995), size=2339 )340 pth1 = export_image(sd, idx1, outdir, relpath=relpath)341 pth2 = export_image(sd, idx2, outdir, relpath=relpath)342 images[pth1] = dict(343 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]344 )345 images[pth2] = dict(346 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]347 )348 top_lines.append([(-13250, 53_000), (-14_000, 59_000), (xpos, 58000)])349 elif dataset == "BinarizedMNIST" and metadata["learning_rate"] == 1e-3:350 xpos = -151351 ypos = 5_200352 # Low logprob, low mem353 idx1, idx2 = random_satisfying(354 U < U_min, M < np.quantile(M, 0.5), size=2355 )356 pth1 = export_image(sd, idx1, outdir, relpath=relpath)357 pth2 = export_image(sd, idx2, outdir, relpath=relpath)358 images[pth1] = dict(359 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]360 )361 images[pth2] = dict(362 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]363 )364 # Low logprob, high mem365 idx1, idx2 = random_satisfying(366 U < U_min, M > np.quantile(M, 0.999), size=2367 )368 pth1 = export_image(sd, idx1, outdir, relpath=relpath)369 pth2 = export_image(sd, idx2, outdir, relpath=relpath)370 images[pth1] = dict(371 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]372 )373 images[pth2] = dict(374 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]375 )376 bottom_lines.append([(U_min - binwidth / 2, 1200), (U_min, 4_900)])377 ####378 ####379 xpos = -138380 # Med low log prob, low mem (1)381 idx1, idx2 = random_satisfying(382 U < -110, U > -120, M < np.quantile(M, 0.1), size=2383 )384 pth1 = export_image(sd, idx1, outdir, relpath=relpath)385 pth2 = export_image(sd, idx2, outdir, relpath=relpath)386 images[pth1] = dict(387 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]388 )389 images[pth2] = dict(390 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]391 )392 # Med low log prob, high mem (1)393 idx1, idx2 = random_satisfying(394 U < -110, U > -120, M > np.quantile(M, 0.999), size=2395 )396 pth1 = export_image(sd, idx1, outdir, relpath=relpath)397 pth2 = export_image(sd, idx2, outdir, relpath=relpath)398 images[pth1] = dict(399 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]400 )401 images[pth2] = dict(402 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]403 )404 bottom_lines.append([(-110 - binwidth / 2, 3000), (xpos, 4_900)])405 ###406 ###407 xpos = -125408 # Central log prob, low mem (1)409 idx1, idx2 = random_satisfying(410 U < -80, U > -90, M < np.quantile(M, 0.1), size=2411 )412 pth1 = export_image(sd, idx1, outdir, relpath=relpath)413 pth2 = export_image(sd, idx2, outdir, relpath=relpath)414 images[pth1] = dict(415 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]416 )417 images[pth2] = dict(418 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]419 )420 # Central log prob, high mem (1)421 idx1, idx2 = random_satisfying(422 U < -80, U > -90, M > np.quantile(M, 0.995), size=2423 )424 pth1 = export_image(sd, idx1, outdir, relpath=relpath)425 pth2 = export_image(sd, idx2, outdir, relpath=relpath)426 images[pth1] = dict(427 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]428 )429 images[pth2] = dict(430 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]431 )432 top_lines.append([(-85, 14_000), (-100, 15_700), (xpos, 15_300)])433 elif dataset == "BinarizedMNIST" and metadata["learning_rate"] == 1e-4:434 xpos = -160435 ypos = 4_900436 # Low logprob, low mem437 idx1, idx2 = random_satisfying(438 U < U_min, M < np.quantile(M, 0.5), size=2439 )440 pth1 = export_image(sd, idx1, outdir, relpath=relpath)441 pth2 = export_image(sd, idx2, outdir, relpath=relpath)442 images[pth1] = dict(443 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]444 )445 images[pth2] = dict(446 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]447 )448 # Low logprob, high mem449 idx1, idx2 = random_satisfying(450 U < U_min, M > np.quantile(M, 0.999), size=2451 )452 pth1 = export_image(sd, idx1, outdir, relpath=relpath)453 pth2 = export_image(sd, idx2, outdir, relpath=relpath)454 images[pth1] = dict(455 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]456 )457 images[pth2] = dict(458 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]459 )460 bottom_lines.append([(U_min - binwidth / 2, 1200), (U_min, 4_800)])461 ####462 ####463 xpos = -146464 # Med low log prob, low mem (1)465 idx1, idx2 = random_satisfying(466 U < -110, U > -120, M < np.quantile(M, 0.1), size=2467 )468 pth1 = export_image(sd, idx1, outdir, relpath=relpath)469 pth2 = export_image(sd, idx2, outdir, relpath=relpath)470 images[pth1] = dict(471 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]472 )473 images[pth2] = dict(474 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]475 )476 # Med low log prob, high mem (1)477 idx1, idx2 = random_satisfying(478 U < -110, U > -120, M > np.quantile(M, 0.999), size=2479 )480 pth1 = export_image(sd, idx1, outdir, relpath=relpath)481 pth2 = export_image(sd, idx2, outdir, relpath=relpath)482 images[pth1] = dict(483 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]484 )485 images[pth2] = dict(486 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]487 )488 bottom_lines.append([(-110 - binwidth / 2, 3800), (xpos, 4_800)])489 ###490 ###491 xpos = -132492 # Central log prob, low mem (1)493 idx1, idx2 = random_satisfying(494 U < -80, U > -90, M < np.quantile(M, 0.1), size=2495 )496 pth1 = export_image(sd, idx1, outdir, relpath=relpath)497 pth2 = export_image(sd, idx2, outdir, relpath=relpath)498 images[pth1] = dict(499 mem=False, x=xpos, y=ypos, yshift=0, U=U[idx1], M=M[idx1]500 )501 images[pth2] = dict(502 mem=False, x=xpos, y=ypos, yshift=1, U=U[idx2], M=M[idx2]503 )504 # Central log prob, high mem (1)505 idx1, idx2 = random_satisfying(506 U < -80, U > -90, M > np.quantile(M, 0.995), size=2507 )508 pth1 = export_image(sd, idx1, outdir, relpath=relpath)509 pth2 = export_image(sd, idx2, outdir, relpath=relpath)510 images[pth1] = dict(511 mem=True, x=xpos, y=ypos, yshift=2, U=U[idx1], M=M[idx1]512 )513 images[pth2] = dict(514 mem=True, x=xpos, y=ypos, yshift=3, U=U[idx2], M=M[idx2]515 )516 top_lines.append([(-85, 13_800), (-110, 14_700), (xpos, 14_500)])517 else:518 raise NotImplementedError519 tex = make_tex(520 midpoints,521 heights_reg,522 heights_high,523 binwidth,...

Full Screen

Full Screen

main-modified-for-bulk.py

Source:main-modified-for-bulk.py Github

copy

Full Screen

...7import image_effects.hsv_color_space as effects_hsv8import image_effects.luv_color_space as effects_luv9import image_effects.rgb_color_space as effects_rgb10count = 011def export_image(Image_Raw_Data) :12 print("[ ! ] Exporting as an Image..")13 img_export_name = f"exported_image_files/mona_lisa-{count}.jpg"14 open_cv.imwrite(img_export_name, Image_Raw_Data)15# img_raw_data = open_cv.imread("./c.jpg")16 17count=count+118export_image(effects_rgb.bgr_2_rgb(open_cv.imread("./c.jpg")))19count=count+120export_image(effects_rgb.bgr_2_rgba(open_cv.imread("./c.jpg")))21count=count+122export_image(effects_rgb.grayscale_image(open_cv.imread("./c.jpg")))23count=count+124export_image(effects_rgb.red_channel_only(open_cv.imread("./c.jpg")))25count=count+126export_image(effects_rgb.green_channel_only(open_cv.imread("./c.jpg")))27count=count+128export_image(effects_rgb.blue_channel_only(open_cv.imread("./c.jpg")))29threshold = int(input("\n[ ? ] Threshold Value : "))30count=count+131export_image(effects_rgb.custom_rgb_threshold(open_cv.imread("./c.jpg"),threshold))32r_threshold = int(input("\n[ ? ] Red Threshold Value : "))33g_threshold = int(input("[ ? ] Green Threshold Value : "))34b_threshold = int(input("[ ? ] Blue Threshold Value : "))35count=count+136export_image(effects_rgb.custom_rgb_gain_or_loss(open_cv.imread("./c.jpg"),r_threshold,37 g_threshold,b_threshold))38count=count+139export_image(effects_hsv.bgr_2_hsv(open_cv.imread("./c.jpg")))40count=count+141export_image(effects_hsv.hue_channel_only(open_cv.imread("./c.jpg")))42count=count+143export_image(effects_hsv.saturation_channel_only(open_cv.imread("./c.jpg")))44count=count+145export_image(effects_hsv.value_channel_only(open_cv.imread("./c.jpg")))46count=count+147export_image(effects_luv.bgr_2_luv(open_cv.imread("./c.jpg")))48count=count+149export_image(effects_luv.luminance_component_only(open_cv.imread("./c.jpg")))50count=count+151export_image(effects_luv.u_chroma_component_only(open_cv.imread("./c.jpg")))52count=count+153export_image(effects_luv.v_chroma_component_only(open_cv.imread("./c.jpg")))54count=count+155export_image(edge_detect.sobel_horizontal_edge_detect_algo(open_cv.imread("./c.jpg")))56count=count+157export_image(edge_detect.sobel_vertical_edge_detect_algo(open_cv.imread("./c.jpg")))58count=count+159export_image(edge_detect.sobel_bothaxis_bitws_or_edge_detect_algo(open_cv.imread("./c.jpg")))60count=count+161export_image(edge_detect.sobel_bothaxis_bitws_and_edge_detect_algo(open_cv.imread("./c.jpg")))62count=count+163export_image(edge_detect.sobel_bothaxis_bitws_xor_edge_detect_algo(open_cv.imread("./c.jpg")))64count=count+165export_image(edge_detect.sobel_bothaxis_bitws_not_edge_detect_algo(open_cv.imread("./c.jpg")))66count=count+167export_image(edge_detect.laplacian_edge_detect_algo(open_cv.imread("./c.jpg")))68threshold_a = int(input("\n[ ? ] Threshold A Value : "))69threshold_b = int(input("[ ? ] Threshold B Value : "))70count=count+1...

Full Screen

Full Screen

export_to_image_editor.py

Source:export_to_image_editor.py Github

copy

Full Screen

1import bpy2import os3from bpy.types import Operator4from bpy_extras.io_utils import ImportHelper5class COATER_OT_image_editor_export(Operator):6 '''Exports the selected image paint canvas to the image editor defined in Blender's preferences'''7 bl_idname = "coater.image_editor_export"8 bl_label = "Export to External Image Editor"9 bl_description = "Exports the select image layer to the image editor defined in Blender's preferences"10 @ classmethod11 def poll(cls, context):12 return context.scene.coater_layers13 False14 def execute(self, context):15 export_image = context.scene.tool_settings.image_paint.canvas16 if export_image != None:17 if export_image.packed_file == None:18 if export_image.file_format == '' or export_image.filepath == '':19 if export_image.is_dirty:20 export_image.save()21 else:22 self.report({'ERROR'}, "Export image has no defined filepath.")23 else:24 self.report({'ERROR'}, "Export image can't be packed to export to an external image editor.")25 bpy.ops.image.external_edit(filepath=export_image.filepath)...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run localstack automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful