How to use ep_all method in localstack

Best Python code snippet using localstack_python

main.py

Source:main.py Github

copy

Full Screen

1from Phase1.preprocess.persian_preprocessor import PersianPreprocessor as PP2from Phase2.preprocessor import Preprocessor as EP23from Phase1.preprocess.english_preprocessor import EnglishPreprocessor as EP4from Phase1.index.indexer import Indexer5from Phase1.preprocess.document_io import read_csv_file_as_list as read_english, \6 read_persian_xml_file_as_list as read_persian7from Phase2.document_io import read_csv_file as read_english28from Phase1.edit_query.edit_query import EditQuery as EQ9from Phase1.search import Searcher10from Phase2.my_tfidf_vectorizer import MyTfIdfVectorizer11from sklearn.svm import LinearSVC12from Phase2.svm import TfIdfClassifier as Classifier13import os14if __name__ == '__main__':15 # Classifier16 train_data = read_english2('../Phase2/source/phase2_train.csv')17 test_data = read_english2('../Phase2/source/phase2_test.csv')18 tfidf_vectorizer = MyTfIdfVectorizer(train_data['text'], EP2())19 best_model = LinearSVC(C=0.5)20 classifier = Classifier(train_data, test_data, tfidf_vectorizer, best_model)21 classifier.fit()22 ep_all = EP()23 pp_all = PP()24 eng_docs = ep_all.preprocess(read_english())25 per_docs = pp_all.preprocess(read_persian())26 indexer = Indexer()27 while True:28 print('Enter the section number:')29 section = input()30 print('Enter subsection number:')31 subsection = input()32 if section == '1':33 if subsection == '1':34 print('Enter the text:')35 txt = input()36 is_eng = EQ.is_english(query=txt)37 if is_eng:38 norm_text = EP().preprocess([txt])39 else:40 norm_text = PP().preprocess([txt])41 print(norm_text)42 elif subsection == '2':43 print('English Repetitive Words:')44 print(ep_all.get_high_accured_words())45 print('Persian Repetitive Words:')46 print(pp_all.get_high_accured_words())47 elif section == '2':48 if subsection == '1':49 for doc in eng_docs:50 indexer.add_doc(doc)51 for doc in per_docs:52 indexer.add_doc(doc)53 print('Indexing is done')54 elif subsection == '2':55 print('Enter the term:')56 term = input()57 ed_term = EQ(term, indexer, ep_all, pp_all).edit()58 print(indexer.get_posting(ed_term))59 elif subsection == '3':60 print('Enter the term:')61 term = input()62 ed_term = EQ(term, indexer, ep_all, pp_all).edit()63 print(indexer.get_pos_posting(ed_term))64 elif section == '3':65 indexer.save_dictionary(file_name='normal_dict.txt')66 print("normal dict size: " + str(os.path.getsize('normal_dict.txt')))67 if subsection == '1':68 indexer.save_dictionary(method='var', file_name='var_dict.txt')69 print("‫‪variable‬‬ ‫‪byte‬‬ dict size: " + str(os.path.getsize('var_dict.txt')))70 indexer.load_dictionary(method='var', file_name='var_dict.txt')71 print('Indexer saved and loaded')72 elif subsection == '2':73 indexer.save_dictionary(method='gamma', file_name='gamma_dict.txt')74 print("gamma code‬‬ dict size: " + str(os.path.getsize('gamma_dict.txt')))75 # indexer.load_dictionary(method='gamma', file_name='gamma_dict.txt')76 print('Indexer saved and loaded')77 elif section == '4':78 if subsection == '1':79 print('Enter the query:')80 query = input()81 print(EQ(query, indexer, ep_all, pp_all).edit())82 elif section == '5':83 if subsection == '1':84 print('Enter the query:')85 query = input()86 print('Enter the subject (0 for none):')87 subject = int(input())88 if subject == 0:89 subject = None90 ed_query = EQ(query, indexer, ep_all, pp_all).edit()91 print(Searcher(indexer, classifier).search(ed_query, subject))92 elif subsection == '2':93 print('Enter the query:')94 query = input()95 print('Enter the window size')96 size = int(input())97 print('Enter the subject (0 for none):')98 subject = int(input())99 if subject == 0:100 subject = None101 ed_query = EQ(query, indexer, ep_all, pp_all).edit()102 print(Searcher(indexer, classifier).search_prox(ed_query, size, subject))103 elif section == '6':104 print("Classify all the English docs")105 tags = classifier.predict_docs(eng_docs)106 print(list(zip(range(len(eng_docs)), tags)))107 elif section == 'exit':108 break109 else:...

Full Screen

Full Screen

overall_EP.py

Source:overall_EP.py Github

copy

Full Screen

1"""2RDX Overall EP3"""4def overall_EP(N, TIME, solutionM, Tset, Rlist, Slist, lg, expmatrixF, coeffmatrixF, expmatrixB, coeffmatrixB, targets, reduction_type, EPmin, graph):5 import numpy as np 6 from my_mech_obj import my_mech_obj7 from RDX_EP import local_error_propagation8 9 t_array = np.linspace(0,max(TIME), N)10 index = np.zeros((N))11 time = np.zeros((N))12 if reduction_type in ['species', 'S']:13 EP_all = np.zeros((len(Slist),N))14 DIC_ind = np.zeros((len(Slist)))15 DIC = np.zeros((len(Slist),len(Slist), N))16 17 else:18 EP_all = np.zeros((len(Rlist),N))19 20 ind_list = []21 ind_list_f = []22 coeffs = []23 #coeff_list = []24 #coeffs = np.zeros((len(Slist), 2, N))25 iterations = np.zeros((N))26 for i in range(N):27 a = 128 while TIME[a] < t_array[i] and a <= len(TIME):29 a = a+130 index[i] = a31 time[i] = TIME[int(a)]32 33 for i in range(len(Slist)):34 ind_list_f.append([])35 36 37 for i in range(N):38 39 t = time[i]40 41 #sample = solutionM[int(index[i]),0:len(Slist)]42 sample = solutionM[int(index[i])][:len(Slist)]43 samplesign = sample >= 044 45 #if samplesign.all:46 if t > -100:47 48 #print(np.shape(sample))49 50 mechobj = my_mech_obj(sample, t, Tset, Rlist, Slist, lg, expmatrixF, coeffmatrixF, expmatrixB, coeffmatrixB)51 52 53 if reduction_type in ['species', 'S']:54 [EP_i, ind_listi, DIC_i, coeffs_i] = local_error_propagation(mechobj, sample, targets, reduction_type, EPmin)55 56 EP_all[:,i] = EP_i57 ind_list.append(ind_listi)58 DIC[:,:,i] = DIC_i[:-1,:]59 coeffs.append(coeffs_i[:,1:])60 elif reduction_type in ['reactions', 'R']:61 EP_i = local_error_propagation(mechobj, sample, targets, reduction_type, EPmin)62 EP_all[:,i] = EP_i63 64 65 EP = np.max(EP_all, axis = 1)66 if graph:67 if reduction_type in ['species', 'S']:68 for i in range(len(Slist)):69 if sum(EP[i] == EP_all[i,:]) == 1:70 ind = np.where(EP[i] == EP_all[i,:])71 ind_list_f[i] = ind_list[int(ind[0])][i]72 DIC_ind[i] = int(ind[0])73 74 #coeff_list.append(coeffs[int(ind[0])][i][1:])75 76 elif sum(EP[i] == EP_all[i,:]) > 1:77 print('Multiple Matches: ', Slist[i]['name'])78 ind_list_f[i] = ind_list[N-1][i]79 DIC_ind[i] = int(N-1)80 #coeff_list.append(coeffs[N-1][i][1:])81 else:82 print('Error: ', Slist[i]['name'])83 84 85 return [EP, mechobj, ind_list_f, DIC, DIC_ind, coeffs]86 87 else:88 89 return [EP, mechobj]90 '''91# Uncomment below if making graphs! 92 if reduction_type in ['species', 'S']:93 for i in range(len(Slist)):94 if sum(EP[i] == EP_all[i,:]) == 1:95 ind = np.where(EP[i] == EP_all[i,:])96 ind_list_f[i] = ind_list[int(ind[0])][i]97 DIC_ind[i] = int(ind[0])98 99 #coeff_list.append(coeffs[int(ind[0])][i][1:])100 101 elif sum(EP[i] == EP_all[i,:]) > 1:102 print('Multiple Matches: ', Slist[i]['name'])103 ind_list_f[i] = ind_list[N-1][i]104 DIC_ind[i] = int(N-1)105 #coeff_list.append(coeffs[N-1][i][1:])106 else:107 print('Error: ', Slist[i]['name'])108 109 110 return [EP, mechobj, ind_list_f, DIC, DIC_ind, coeffs]111 112 elif reduction_type in ['reactions', 'R']:113 return [EP, mechobj]...

Full Screen

Full Screen

fitdir.py

Source:fitdir.py Github

copy

Full Screen

1"""2Point estimates of Dirichlet parameters, based on3Thomas P. Minka 2009, "Estimating a Dirichlet distribution"4http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf5"""6from __future__ import division7import numpy as np8def moment_match_ronning(pvecs):9 """Minka eq. 23. not extensively tested"""10 N,K = pvecs.shape11 if N < 10:12 print "warning, N={} is unreliable for moment matching".format(N)13 ep_all = pvecs.mean(0)14 vp_all = pvecs.var(0)15 vp_all[vp_all < 1e-5] = 1e-516 ep = ep_all[:(K-1)]17 vp = vp_all[:(K-1)]18 terms = np.log(ep*(1-ep)/vp - 1)19 sumalpha = np.exp( np.mean(terms) )20 return ep_all * sumalpha21fitdir = moment_match_ronning22if __name__=='__main__':23 import random24 C=1025 N=2026 K=527 alpha = C * np.ones(K) / K28 for outer in range(10):29 d = np.random.dirichlet(alpha, N)30 # bootstrap31 results = []32 for itr in range(10000):33 samp=np.array([random.randrange(N) for i in range(N)])34 a=fitdir(d[samp])35 results.append(a)36 r = np.array(results)37 print "Real ", alpha38 print "Estimates:"39 print "low ",r.mean(0)-r.std(0)*240 print "mean ",r.mean(0)41 print "high ",r.mean(0)+r.std(0)*2...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run localstack automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful