How to use create_parameter method in localstack

Best Python code snippet using localstack_python

test_ssm.py

Source:test_ssm.py Github

copy

Full Screen

...16 assert "Parameters" in response17 assert isinstance(response["Parameters"], list)18 def test_put_parameters(self, ssm_client, create_parameter):19 param_name = f"param-{short_uid()}"20 create_parameter(21 Name=param_name,22 Description="test",23 Value="123",24 Type="String",25 )26 _assert(param_name, param_name, ssm_client)27 _assert(f"/{param_name}", param_name, ssm_client) # TODO: not valid28 # TODO botocore.exceptions.ClientError: An error occurred (ValidationException) when calling the GetParameter operation: Parameter name: can't be prefixed with "ssm" (case-insensitive). If formed as a path, it can consist of sub-paths divided by slash symbol; each sub-path can be formed as a mix of letters, numbers and the following 3 symbols .-_29 def test_hierarchical_parameter(self, ssm_client, create_parameter):30 param_a = f"{short_uid()}"31 create_parameter(32 Name=f"/{param_a}/b/c",33 Value="123",34 Type="String",35 )36 _assert(f"/{param_a}/b/c", f"/{param_a}/b/c", ssm_client)37 _assert(f"/{param_a}//b//c", f"/{param_a}/b/c", ssm_client)38 _assert(f"{param_a}/b//c", f"/{param_a}/b/c", ssm_client)39 # TODO botocore.exceptions.ClientError: An error occurred (ValidationException) when calling the GetParameter operation: WithDecryption flag must be True for retrieving a Secret Manager secret.40 def test_get_secret_parameter(self, ssm_client, secretsmanager_client, create_secret):41 secret_name = f"test_secret-{short_uid()}"42 create_secret(43 Name=secret_name,44 SecretString="my_secret",45 Description="testing creation of secrets",46 )47 result = ssm_client.get_parameter(Name=f"/aws/reference/secretsmanager/{secret_name}")48 assert f"/aws/reference/secretsmanager/{secret_name}" == result.get("Parameter").get("Name")49 assert "my_secret" == result.get("Parameter").get("Value")50 source_result = result.get("Parameter").get("SourceResult")51 assert source_result is not None, "SourceResult should be present"52 assert type(source_result) is str, "SourceResult should be a string"53 # TODO: botocore.exceptions.ClientError: An error occurred (ValidationException) when calling the GetParameter operation: WithDecryption flag must be True for retrieving a Secret Manager secret.54 def test_get_inexistent_secret(self, ssm_client):55 with pytest.raises(ssm_client.exceptions.ParameterNotFound):56 ssm_client.get_parameter(Name="/aws/reference/secretsmanager/inexistent")57 # TODO: AssertionError: assert '/aws/reference/secretsmanager/9763a545_test_secret_params' in ['inexistent_param', '/aws/reference/secretsmanager/inexistent_secret']58 def test_get_parameters_and_secrets(59 self, ssm_client, secretsmanager_client, create_parameter, create_secret60 ):61 param_name = f"param-{short_uid()}"62 secret_path = "/aws/reference/secretsmanager/"63 secret_name = f"{short_uid()}_test_secret_params"64 complete_secret = secret_path + secret_name65 create_parameter(66 Name=param_name,67 Description="test",68 Value="123",69 Type="String",70 )71 create_secret(72 Name=secret_name,73 SecretString="my_secret",74 Description="testing creation of secrets",75 )76 response = ssm_client.get_parameters(77 Names=[78 param_name,79 complete_secret,80 "inexistent_param",81 secret_path + "inexistent_secret",82 ]83 )84 found = response.get("Parameters")85 not_found = response.get("InvalidParameters")86 for param in found:87 assert param["Name"] in [param_name, complete_secret]88 for param in not_found:89 # TODO: AssertionError: assert '/aws/reference/secretsmanager/9763a545_test_secret_params' in ['inexistent_param', '/aws/reference/secretsmanager/inexistent_secret']90 assert param in ["inexistent_param", secret_path + "inexistent_secret"]91 def test_get_parameters_by_path_and_filter_by_labels(self, ssm_client, create_parameter):92 prefix = f"/prefix-{short_uid()}"93 path = f"{prefix}/path"94 value = "value"95 param = create_parameter(Name=path, Value=value, Type="String")96 ssm_client.label_parameter_version(97 Name=path, ParameterVersion=param["Version"], Labels=["latest"]98 )99 list_of_params = ssm_client.get_parameters_by_path(100 Path=prefix, ParameterFilters=[{"Key": "Label", "Values": ["latest"]}]101 )102 assert len(list_of_params["Parameters"]) == 1103 found_param = list_of_params["Parameters"][0]104 assert path == found_param["Name"]105 assert found_param["ARN"]106 assert found_param["Type"] == "String"...

Full Screen

Full Screen

fpn.py

Source:fpn.py Github

copy

Full Screen

...4243 for m in self.sublayers():44 if isinstance(m, nn.Conv2D):45 n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels46 m.weight = paddle.create_parameter(47 shape=m.weight.shape,48 dtype='float32',49 default_initializer=paddle.nn.initializer.Normal(50 0, math.sqrt(2. / n)))51 elif isinstance(m, nn.BatchNorm2D):52 m.weight = paddle.create_parameter(53 shape=m.weight.shape,54 dtype='float32',55 default_initializer=paddle.nn.initializer.Constant(1.0))56 m.bias = paddle.create_parameter(57 shape=m.bias.shape,58 dtype='float32',59 default_initializer=paddle.nn.initializer.Constant(0.0))6061 def forward(self, x):62 return self.relu(self.bn(self.conv(x)))636465class FPN(nn.Layer):66 def __init__(self, in_channels, out_channels):67 super(FPN, self).__init__()6869 # Top layer70 self.toplayer_ = Conv_BN_ReLU(71 in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)72 # Lateral layers73 self.latlayer1_ = Conv_BN_ReLU(74 in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)7576 self.latlayer2_ = Conv_BN_ReLU(77 in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)7879 self.latlayer3_ = Conv_BN_ReLU(80 in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)8182 # Smooth layers83 self.smooth1_ = Conv_BN_ReLU(84 out_channels, out_channels, kernel_size=3, stride=1, padding=1)8586 self.smooth2_ = Conv_BN_ReLU(87 out_channels, out_channels, kernel_size=3, stride=1, padding=1)8889 self.smooth3_ = Conv_BN_ReLU(90 out_channels, out_channels, kernel_size=3, stride=1, padding=1)9192 self.out_channels = out_channels * 493 for m in self.sublayers():94 if isinstance(m, nn.Conv2D):95 n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels96 m.weight = paddle.create_parameter(97 shape=m.weight.shape,98 dtype='float32',99 default_initializer=paddle.nn.initializer.Normal(100 0, math.sqrt(2. / n)))101 elif isinstance(m, nn.BatchNorm2D):102 m.weight = paddle.create_parameter(103 shape=m.weight.shape,104 dtype='float32',105 default_initializer=paddle.nn.initializer.Constant(1.0))106 m.bias = paddle.create_parameter(107 shape=m.bias.shape,108 dtype='float32',109 default_initializer=paddle.nn.initializer.Constant(0.0))110111 def _upsample(self, x, scale=1):112 return F.upsample(x, scale_factor=scale, mode='bilinear')113114 def _upsample_add(self, x, y, scale=1):115 return F.upsample(x, scale_factor=scale, mode='bilinear') + y116117 def forward(self, x):118 f2, f3, f4, f5 = x119 p5 = self.toplayer_(f5)120 ...

Full Screen

Full Screen

lstm.py

Source:lstm.py Github

copy

Full Screen

...5 super(LSTM, self).__init__()6 self.input_size = input_size7 self.hidden_size = hidden_size8 self.output_size = output_size9 self.W_hi = LSTM.create_parameter(hidden_size, hidden_size)10 self.W_hf = LSTM.create_parameter(hidden_size, hidden_size)11 self.W_ho = LSTM.create_parameter(hidden_size, hidden_size)12 self.W_hh = LSTM.create_parameter(hidden_size, hidden_size)13 self.W_xi = LSTM.create_parameter(hidden_size, input_size)14 self.W_xf = LSTM.create_parameter(hidden_size, input_size)15 self.W_xo = LSTM.create_parameter(hidden_size, input_size)16 self.W_xh = LSTM.create_parameter(hidden_size, input_size)17 self.b_i = LSTM.create_parameter(hidden_size, 1)18 self.b_f = LSTM.create_parameter(hidden_size, 1)19 self.b_o = LSTM.create_parameter(hidden_size, 1)20 self.b_h = LSTM.create_parameter(hidden_size, 1)21 self.W_hy = LSTM.create_parameter(output_size, hidden_size)22 self.b_y = LSTM.create_parameter(output_size, 1)23 def get_gradient_norm(self, norm=2):24 return [p.grad.data.norm(norm).item() for p in self.parameters()]25 def get_parameter_names(self):26 return [name for name, _ in self.named_parameters()]27 @staticmethod28 def create_parameter(*size):29 parameter = nn.Parameter(torch.FloatTensor(*size))30 parameter.requires_grad = True31 nn.init.xavier_uniform_(parameter)32 return parameter33 def forward(self, input, hidden, memory):34 i = torch.sigmoid(self.W_hi @ hidden.T + self.W_xi @ input.view(-1, 1) + self.b_i).T35 f = torch.sigmoid(self.W_hf @ hidden.T + self.W_xf @ input.view(-1, 1) + self.b_f).T36 o = torch.sigmoid(self.W_ho @ hidden.T + self.W_xo @ input.view(-1, 1) + self.b_o).T37 memory_ = torch.tanh(self.W_hh @ hidden.T + self.W_xh @ input.view(-1, 1) + self.b_h).T38 memory = f * memory + i * memory_39 hidden = o * torch.tanh(memory)40 output = (self.W_hy @ hidden.T + self.b_y).T41 return output, hidden, memory42 def init_hidden(self):...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run localstack automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful