Best Python code snippet using localstack_python
Main2.py
Source:Main2.py
...74 f1_micro[algorithm + '_wrapper'] = np.zeros((9, 10))75 train_time[algorithm + '_wrapper'] = np.zeros((9, 10))76 test_time[algorithm + '_wrapper'] = np.zeros((9, 10))77 for percent in range(1, 10):78 a, b, c, d, e = wrapper.cross_validation_wrapper(79 data_name=data_set_name, mlc_type=mlc, compare_with=algorithm, feature_threshold=(percent * 0.1),80 need_normalize=need_normalize, need_sampling=need_sampling, need_contaminate=need_contaminate)81 hamming_loss[algorithm + '_wrapper'][percent-1, :], f1_macro[algorithm + '_wrapper'][percent-1, :],\82 f1_micro[algorithm + '_wrapper'][percent-1, :], train_time[algorithm + '_wrapper'][percent-1, :],\83 test_time[algorithm + '_wrapper'][percent-1, :] = a[percent-1, :], b[percent-1, :], c[percent-1, :],\84 d[percent-1, :], e[percent-1, :]85 np.save(dir_name + '/hamming_loss_' + algorithm + '_wrapper', hamming_loss[algorithm + '_wrapper'])86 np.save(dir_name + '/f1_macro_' + algorithm + '_wrapper', f1_macro[algorithm + '_wrapper'])87 np.save(dir_name + '/f1_micro_' + algorithm + '_wrapper', f1_micro[algorithm + '_wrapper'])88 np.save(dir_name + '/train_time_' + algorithm + '_wrapper', train_time[algorithm + '_wrapper'])89 np.save(dir_name + '/test_time_' + algorithm + '_wrapper', test_time[algorithm + '_wrapper'])90 else:91 ranking_loss[algorithm + '_wrapper'] = np.zeros((9, 10))92 average_precision[algorithm + '_wrapper'] = np.zeros((9, 10))93 train_time[algorithm + '_wrapper'] = np.zeros((9, 10))94 test_time[algorithm + '_wrapper'] = np.zeros((9, 10))95 for percent in range(1, 10):96 a, b, c, d = wrapper.cross_validation_wrapper(97 data_name=data_set_name, mlc_type=mlc, compare_with=algorithm, feature_threshold=(percent * 0.1),98 need_normalize=need_normalize, need_sampling=need_sampling, need_contaminate=need_contaminate)99 ranking_loss[algorithm + '_wrapper'][percent-1, :],\100 average_precision[algorithm + '_wrapper'][percent-1, :],\101 train_time[algorithm + '_wrapper'][percent-1, :],\102 test_time[algorithm + '_wrapper'][percent-1, :] = a[percent-1, :], b[percent-1, :], c[percent-1, :],\103 d[percent-1, :]104 np.save(dir_name + '/ranking_loss_' + algorithm + '_wrapper', ranking_loss[algorithm + '_wrapper'])105 np.save(dir_name + '/average_precision_' + algorithm + '_wrapper', average_precision[algorithm + '_wrapper'])106 np.save(dir_name + '/train_time_' + algorithm + '_wrapper', train_time[algorithm + '_wrapper'])107 np.save(dir_name + '/test_time_' + algorithm + '_wrapper', test_time[algorithm + '_wrapper'])108 return load_results(data_set_name, mlc, test_name, algorithm_list_filter, algorithm_list_wrapper)109 # return hamming_loss, f1_macro, f1_micro, ranking_loss, average_precision, train_time, test_time110def load_results(data_set_name, mlc, test_name, algorithm_list_filter=[], algorithm_list_wrapper=[]):...
Main.py
Source:Main.py
...72 np.save(dir_name + '/test_time_' + algorithm, test_time[algorithm])73 for algorithm in algorithm_list_wrapper:74 if mlc != 'CLR':75 hamming_loss[algorithm + '_wrapper'], f1_macro[algorithm + '_wrapper'], f1_micro[algorithm + '_wrapper'],\76 train_time[algorithm + '_wrapper'], test_time[algorithm + '_wrapper'] = wrapper.cross_validation_wrapper(77 data_name=data_set_name, mlc_type=mlc, compare_with=algorithm, feature_threshold=0,78 need_normalize=need_normalize, need_sampling=need_sampling, need_contaminate=need_contaminate,79 need_shuffling=need_shuffling)80 np.save(dir_name + '/hamming_loss_' + algorithm + '_wrapper', hamming_loss[algorithm + '_wrapper'])81 np.save(dir_name + '/f1_macro_' + algorithm + '_wrapper', f1_macro[algorithm + '_wrapper'])82 np.save(dir_name + '/f1_micro_' + algorithm + '_wrapper', f1_micro[algorithm + '_wrapper'])83 np.save(dir_name + '/train_time_' + algorithm + '_wrapper', train_time[algorithm + '_wrapper'])84 np.save(dir_name + '/test_time_' + algorithm + '_wrapper', test_time[algorithm + '_wrapper'])85 else:86 ranking_loss[algorithm + '_wrapper'], average_precision[algorithm + '_wrapper'], \87 train_time[algorithm + '_wrapper'], test_time[algorithm + '_wrapper'] =\88 wrapper.cross_validation_wrapper(89 data_name=data_set_name, mlc_type=mlc, compare_with=algorithm, feature_threshold=0,90 need_normalize=need_normalize, need_sampling=need_sampling, need_contaminate=need_contaminate,91 need_shuffling=need_shuffling)92 np.save(dir_name + '/ranking_loss_' + algorithm + '_wrapper', ranking_loss[algorithm + '_wrapper'])93 np.save(dir_name + '/average_precision_' + algorithm + '_wrapper', average_precision[algorithm + '_wrapper'])94 np.save(dir_name + '/train_time_' + algorithm + '_wrapper', train_time[algorithm + '_wrapper'])95 np.save(dir_name + '/test_time_' + algorithm + '_wrapper', test_time[algorithm + '_wrapper'])96 return load_results(data_set_name, mlc, test_name, algorithm_list_filter, algorithm_list_wrapper )97 # return hamming_loss, f1_macro, f1_micro, ranking_loss, average_precision, train_time, test_time98def load_results(data_set_name, mlc, test_name, algorithm_list_filter=[], algorithm_list_wrapper=[]):99 # loading results from test() and show the plot100 hamming_loss = dict()101 f1_macro = dict()102 f1_micro = dict()...
yaxmlplus.py
Source:yaxmlplus.py
...126 for image in images:127 etree.SubElement(offer, "image").text = image 128 etree.SubElement(offer, "description").text = self._wrapper.description()129 if not is_stead:130 self.unit_wrapper(etree, etree.SubElement(offer, "area"), self._wrapper.area())131 if self._wrapper.living_space():132 self.unit_wrapper(etree, etree.SubElement(offer, "living-space"), self._wrapper.living_space())133 if self._wrapper.kitchen_space():134 self.unit_wrapper(etree, etree.SubElement(offer, "kitchen-space"), self._wrapper.kitchen_space())135 for room_space in self._wrapper.rooms_space():136 self.unit_wrapper(etree, etree.SubElement(offer, "room-space"), room_space)137 if self._wrapper.rooms_type():138 etree.SubElement(offer, "rooms-type").text = self._wrapper.rooms_type() 139 self.add_bool_element(etree, offer, 'kitchen-furniture', self._wrapper.kitchen_furniture())140 self.add_bool_element(etree, offer, 'room-furniture', self._wrapper.room_furniture())141 self.add_bool_element(etree, offer, 'television', self._wrapper.television())142 self.add_bool_element(etree, offer, 'washing-machine', self._wrapper.washing_machine())143 self.add_bool_element(etree, offer, 'refrigerator', self._wrapper.refrigerator())144 self.add_bool_element(etree, offer, 'alarm', self._wrapper.alarm())145 else:146 etree.SubElement(offer, "lot-type").text = self._wrapper.lot_type() 147 if has_stead: 148 self.unit_wrapper(etree, etree.SubElement(offer, "lot-area"), self._wrapper.lot_area(), u'ÑоÑ')149 self.add_bool_element(etree, offer, 'new-flat', self._wrapper.new_flat()) 150 if self._wrapper.rooms():151 etree.SubElement(offer, "rooms").text = self._wrapper.rooms() 152 if self._wrapper.rooms_offered():153 etree.SubElement(offer, "rooms-offered").text = self._wrapper.rooms_offered()154 155 if self._wrapper.is_studio():156 self.add_bool_element(etree, offer, 'open-plan', self._wrapper.is_studio())157 158 self.add_bool_element(etree, offer, 'phone', self._wrapper.phone()) 159 self.add_bool_element(etree, offer, 'internet', self._wrapper.internet())160 self.add_bool_element(etree, offer, 'mortgage', self._wrapper.mortgage())161 162 if self._wrapper.renovation():...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!