How to use set_states method in lisa

Best Python code snippet using lisa_python

search.py

Source:search.py Github

copy

Full Screen

1# search.py2# ---------3# Licensing Information: You are free to use or extend these projects for4# educational purposes provided that (1) you do not distribute or publish5# solutions, (2) you retain this notice, and (3) you provide clear6# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.7# 8# Attribution Information: The Pacman AI projects were developed at UC Berkeley.9# The core projects and autograders were primarily created by John DeNero10# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).11# Student side autograding was added by Brad Miller, Nick Hay, and12# Pieter Abbeel (pabbeel@cs.berkeley.edu).13"""14In search.py, you will implement generic search algorithms which are called by15Pacman agents (in searchAgents.py).16"""17import util18class SearchProblem:19 """20 This class outlines the structure of a search problem, but doesn't implement21 any of the methods (in object-oriented terminology: an abstract class).22 You do not need to change anything in this class, ever.23 """24 def getStartState(self):25 """26 Returns the start state for the search problem.27 """28 util.raiseNotDefined()29 def isGoalState(self, state):30 """31 state: Search state32 Returns True if and only if the state is a valid goal state.33 """34 util.raiseNotDefined()35 def getSuccessors(self, state):36 """37 state: Search state38 For a given state, this should return a list of triples, (successor,39 action, stepCost), where 'successor' is a successor to the current40 state, 'action' is the action required to get there, and 'stepCost' is41 the incremental cost of expanding to that successor.42 """43 util.raiseNotDefined()44 def getCostOfActions(self, actions):45 """46 actions: A list of actions to take47 This method returns the total cost of a particular sequence of actions.48 The sequence must be composed of legal moves.49 """50 util.raiseNotDefined()51def tinyMazeSearch(problem):52 """53 Returns a sequence of moves that solves tinyMaze. For any other maze, the54 sequence of moves will be incorrect, so only use this for tinyMaze.55 """56 from game import Directions57 s = Directions.SOUTH58 w = Directions.WEST59 return [s, s, w, s, w, w, s, w]60def depthFirstSearch(problem):61 """62 Search the deepest nodes in the search tree first.63 Your search algorithm needs to return a list of actions that reaches the64 goal. Make sure to implement a graph search algorithm.65 To get started, you might want to try some of these simple commands to66 understand the search problem that is being passed in:67 print "Start:", problem.getStartState()68 print "Is the start a goal?", problem.isGoalState(problem.getStartState())69 print "Start's successors:", problem.getSuccessors(problem.getStartState())70 """71 "*** YOUR CODE HERE ***"72 state_stack = util.Stack()73 set_states = set()74 state_stack.push((problem.getStartState(), []))75 while not state_stack.isEmpty():76 popped_state, popped_moves = state_stack.pop()77 if (popped_state in set_states):78 continue79 elif problem.isGoalState(popped_state):80 return popped_moves81 set_states.add(popped_state)82 for state, direction, cost in problem.getSuccessors(popped_state):83 if (state in set_states):84 continue85 state_stack.push((state, popped_moves + [direction]))86 return []87def breadthFirstSearch(problem):88 """Search the shallowest nodes in the search tree first."""89 "*** YOUR CODE HERE ***"90 state_queue = util.Queue()91 set_states = set()92 state_queue.push((problem.getStartState(), []))93 while not state_queue.isEmpty():94 popped_state, popped_moves = state_queue.pop()95 if (popped_state in set_states):96 continue97 elif problem.isGoalState(popped_state):98 return popped_moves99 set_states.add(popped_state)100 for state, direction, cost in problem.getSuccessors(popped_state):101 if (state in set_states):102 continue103 state_queue.push((state, popped_moves + [direction]))104 return []105def uniformCostSearch(problem):106 """Search the node of least total cost first."""107 "*** YOUR CODE HERE ***"108 state_pq = util.PriorityQueue()109 set_states = set()110 state_pq.push((problem.getStartState(), [], 0), 0)111 while not state_pq.isEmpty():112 popped_state, popped_moves, popped_cost = state_pq.pop()113 if (popped_state in set_states):114 continue115 elif problem.isGoalState(popped_state):116 return popped_moves117 set_states.add(popped_state)118 for state, direction, cost in problem.getSuccessors(popped_state):119 if (state in set_states):120 continue121 state_pq.push((state, popped_moves + [direction], popped_cost + cost), popped_cost + cost)122 return []123def nullHeuristic(state, problem=None):124 """125 A heuristic function estimates the cost from the current state to the nearest126 goal in the provided SearchProblem. This heuristic is trivial.127 """128 return 0129def aStarSearch(problem, heuristic=nullHeuristic):130 """Search the node that has the lowest combined cost and heuristic first."""131 "*** YOUR CODE HERE ***"132 state_pq = util.PriorityQueue()133 set_states = set()134 state_pq.push((problem.getStartState(), [], 0), 0)135 while not state_pq.isEmpty():136 popped_state, popped_moves, popped_cost = state_pq.pop()137 if (popped_state in set_states):138 continue139 if problem.isGoalState(popped_state):140 return popped_moves141 set_states.add(popped_state)142 for state, direction, cost in problem.getSuccessors(popped_state):143 if (state in set_states):144 continue145 hvalue = heuristic(state, problem)146 state_pq.push((state, popped_moves + [direction], popped_cost + cost), popped_cost + cost + hvalue)147 return []148# Abbreviations149bfs = breadthFirstSearch150dfs = depthFirstSearch151astar = aStarSearch...

Full Screen

Full Screen

main.py

Source:main.py Github

copy

Full Screen

...34 d_ndfa['Transitions'][state] = {} 35 for each in lines_trans:36 d_ndfa['Transitions'][each[0]][each[1]] = each[2:] 37 print(d_ndfa)38def print_set_states(set_states):39 print("\nTransition of Set of States\n".center(20))40 for sets in set_states:41 for transition in set_states[sets]:42 print(sets,",",transition, "=>", set_states[sets][transition], "\n")43def equivalence(set_states):44 i = 045 d_dfa={}46 d_eq={}47 for sets in set_states:48 d_eq[sets] = "q"+str(i) 49 d_dfa['q'+str(i)] = set_states[sets] 50 i+=151 for key in d_dfa: 52 for letter, trans in d_dfa[key].items():53 key_name = ",".join(trans)54 if key_name in d_eq.keys(): 55 d_dfa[key][letter] = d_eq[key_name] 56 return d_dfa57def print_table(set_states, alphabet):58 print("Dfa transition table\n".center(25))59 table = PrettyTable()60 header = ['States']+alphabet61 table.field_names = header62 for s in set_states:63 row_data = []64 row_data.append(s)65 for t in alphabet:66 if t in set_states[s]:67 row_data.append(set_states[s][t])68 else:69 row_data.append("--")70 if len(row_data) == len(header):71 table.add_row(row_data)72 print(table)73def main():74 d_ndfa = read_data()75 result = to_dfa(d_ndfa['Initial_state'], d_ndfa, set_states = {})76 print_set_states(result)77 print_table(result, d_ndfa['Alphabet'])78 print_table(equivalence(result), d_ndfa['Alphabet'])79if __name__ == "__main__":...

Full Screen

Full Screen

utils.py

Source:utils.py Github

copy

Full Screen

1"""2MIT License, Kemal Ficici, 20183github.com/kemfic4"""5import numpy as np6import matplotlib7import matplotlib.pyplot as plt8class process(object):9 process_response = 010 def __init__(self, const_shift=0, noise=False):11 self.constant_shift = const_shift/512.012 self.noise = noise13 def update(self, controller_response, current_state):14 self.process_response = self.process_response*0.96 - 0.01*controller_response + self.constant_shift +self.noise*((np.random.rand()-0.5)/100)15 self.process_response = min(1, self.process_response)16 self.process_response = max(-1, self.process_response)17 return current_state + self.process_response18def error(current_state, set_state):19 return current_state - set_state20 21class Plant(object):22 23 def __init__(self, control, d_t=0.1, t_max=60, set_steady=False, set_shift=False, set_sin=False, noise=False):24 self.delta_t = d_t25 self.t_max = t_max26 self.t = np.arange(0, self.t_max, self.delta_t)27 if set_sin:28 self.set_states = np.sin(self.t*4*np.pi/self.t_max)29 elif set_steady:30 self.set_states = np.zeros_like(self.t)31 else:32 self.set_states = np.zeros_like(self.t)33 self.set_states[200:400] = 134 35 self.cur_process = process(set_shift, noise) 36 self.controller = control37 def simulate(self):38 states = np.zeros_like(self.t)39 states[0] = -140 errors = np.zeros_like(self.t)41 errors[0] = error(states[0], self.set_states[0])42 for i in range(1,len(self.t)):43 controller_response = self.controller.update(errors[i-1], delta_t = self.delta_t)44 states[i] = self.cur_process.update(controller_response, states[i-1])45 errors[i] = error(states[i], self.set_states[i])46 47 errortotal = np.sum(abs(errors))48 plt.plot(states, color='blue', label='environment state')49 plt.plot(self.set_states, color='red', label = 'set (desired) state')50 plt.plot([], color='none', label = 'total error: ' + str(errortotal)[0:9])51 plt.xlabel('Time')52 plt.ylabel('Error')53 plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run lisa automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful