How to use dump_variables method in lisa

Best Python code snippet using lisa_python

vgg16_top_tf_keras.py

Source:vgg16_top_tf_keras.py Github

copy

Full Screen

...235 summaries_op = tf.summary.merge_all()236 #summary_writer.add_graph(sess.graph)237 sess.run(init)238 239 #dump_variables()240 241 # note that it is necessary to start with a fully-trained242 # classifier, including the top classifier,243 # in order to successfully do fine-tuning244 245 # prepare data augmentation configuration246 train_datagen = ImageDataGenerator(247 rescale=1. / 255,248 shear_range=0.2,249 zoom_range=0.2,250 horizontal_flip=True)251 252 test_datagen = ImageDataGenerator(rescale=1. / 255)253 ...

Full Screen

Full Screen

trainer.py

Source:trainer.py Github

copy

Full Screen

1import chainer2from chainer import cuda, serializers3from chainer import computational_graph as cg4import numpy as np5import tqdm6import sys7import copy8from deepnet.core import config9from deepnet import utils10import os.path11import subprocess12import gc13from time import sleep14import corenet15class Trainer:16 def __init__(self,17 network, train_iter, valid_iter,18 visualizers, train_config, optimizer,19 logger, archive_dir, archive_nodes,20 postprocessor, redirect, architecture_loss,21 ):22 config.set_global_config('main_network', network)23 self.network = network24 self.train_config = train_config25 self.n_max_train_iter = train_config['n_max_train_iter']26 self.n_max_valid_iter = train_config['n_max_valid_iter'] if train_config['n_max_valid_iter'] is not None else len(27 valid_iter.dataset)28 self.n_valid_step = train_config['n_valid_step']29 self.progress_vars = train_config['progress_vars']30 self.train_iter = train_iter31 self.valid_iter = valid_iter32 self.archive_dir = archive_dir33 self.archive_nodes = archive_nodes34 self.visualizers = visualizers35 self.postprocessor = postprocessor36 self.optimizer = optimizer37 for key, optimizer in self.optimizer.items():38 corenet.ChainerNode.add_updater(key, optimizer)39 self.logger = logger40 self.dump_variables = []41 self.redirect = redirect42 self.architecture_loss = architecture_loss43 for l in self.logger:44 for var_name in l.dump_variables:45 pos = var_name.find('.')46 if pos == -1:47 self.dump_variables.append(var_name)48 else:49 self.dump_variables.append(var_name[pos+1:])50 self.dump_variables = list(set(self.dump_variables))51 def train(self):52 with tqdm.tqdm(total=self.n_max_train_iter) as pbar:53 for i, batch in enumerate(self.train_iter):54 self.train_iteration = i55 variables = {}56 variables['__iteration__'] = i57 variables['__train_iteration__'] = self.train_iteration58 input_vars = self.batch_to_vars(batch)59 # Inference current batch.60 for stage_input in input_vars:61 self.inference(stage_input, is_train=True)62 sleep(1e-3)63 # Back propagation and update network64 self.network.update()65 # Update variables.66 variables.update(self.network.variables)67 self.network.variables.clear()68 # Save network architecture69 if self.train_iteration == 0:70 self.write_network_architecture(71 self.architecture_loss[0],72 variables[self.architecture_loss[1]]73 )74 # Update variables and unwrapping chainer variable75 for var_name, value in variables.items():76 variables[var_name] = utils.unwrapped(value)77 variables.update({'train.' + name: utils.unwrapped(value)78 for name, value in variables.items()})79 # validation if current iteraiton is multiplier as n_valid_step80 valid_keys = []81 if i % self.n_valid_step == 0:82 valid_variables = self.validate(variables=variables)83 variables.update(84 {'valid.' + name: value for name, value in valid_variables.items()})85 self.network.variables.clear()86 del valid_variables87 # Write log88 for logger in self.logger:89 logger(variables, is_valid=False)90 # Update progress bar91 self.print_description(pbar, variables)92 pbar.update()93 if self.n_max_train_iter <= i:94 break95 # Refresh variables96 variables.clear()97 gc.collect()98 def validate(self, variables):99 valid_variables = dict()100 with tqdm.tqdm(total=self.n_max_valid_iter) as pbar, \101 chainer.no_backprop_mode():102 self.valid_iter.reset()103 for i, batch in enumerate(self.valid_iter):104 sleep(1e-3)105 self.valid_iteration = i106 variables['__iteration__'] = i107 variables['__valid_iteration__'] = self.valid_iteration108 input_vars = self.batch_to_vars(batch)109 # Inference110 for j, stage_input in enumerate(input_vars):111 self.inference(stage_input, is_train=False)112 variables['__stage__'] = j113 variables.update(self.network.variables)114 for visualizer in self.visualizers:115 visualizer(variables)116 # Update variables117 for var_name in self.dump_variables:118 var = variables[var_name]119 if var_name not in valid_variables: # Initialize variable120 if isinstance(var, chainer.Variable):121 valid_variables[var_name] = chainer.functions.copy(122 var, -1)123 else:124 valid_variables[var_name] = var125 else:126 if isinstance(var, chainer.Variable):127 valid_variables[var_name] += chainer.functions.copy(128 var, -1)129 # Post processing130 self.postprocessor(variables, 'valid', True)131 pbar.update(self.valid_iter.batch_size)132 if self.n_max_valid_iter <= (i + 1) * self.valid_iter.batch_size:133 break134 pbar.close()135 for node_name in self.archive_nodes:136 try:137 serializers.save_npz(138 os.path.join(self.archive_dir, node_name +139 '_{:08d}.npz'.format(variables['__train_iteration__'])),140 self.network.get_node(node_name).model141 )142 except KeyError:143 raise KeyError('Failed to save npz file: ' + node_name)144 # Post processing145 self.postprocessor(variables, 'valid', False)146 # Compute mean variables147 for var_name in self.dump_variables:148 var = valid_variables[var_name]149 denom = float(self.n_max_valid_iter) / self.valid_iter.batch_size150 if isinstance(var, chainer.Variable):151 if self.train_config['gpu'][0] >= 0:152 valid_variables[var_name] = float(153 chainer.cuda.to_cpu((var / denom).data)154 )155 else:156 valid_variables[var_name] = float((var / denom).data)157 # Save visualized results158 for visualizer in self.visualizers:159 visualizer(variables)160 visualizer.save()161 visualizer.clear()162 return valid_variables163 def print_description(self, pbar, variables):164 disp_vars = {}165 display_var_formats = []166 for var_format in self.progress_vars:167 #168 var_name = ''169 pos = var_format.find(':')170 if pos == -1:171 var_name = var_format172 else:173 var_name = var_format[:pos]174 # cast variable175 var = variables[var_name]176 display_var_formats.append(var_name + '=' + '{' + var_format + '}')177 if isinstance(var, chainer.Variable):178 value = None179 if self.train_config['gpu'][0] >= 0:180 value = chainer.cuda.to_cpu(var.data)181 else:182 value = var.data183 if isinstance(value, np.ndarray):184 if value.ndim == 0 or value.size == 1:185 disp_vars[var_name] = float(value)186 else:187 disp_vars[var_name] = value.to_list()188 elif isinstance(var, np.ndarray):189 if var.ndim == 0 or var.size == 1:190 disp_vars[var_name] = float(var)191 else:192 disp_vars[var_name] = var.to_list()193 else:194 disp_vars[var_name] = var195 display_format = 'train[' + ','.join(display_var_formats) + ']'196 pbar.set_description(display_format.format(197 **disp_vars, __iteration__=variables['__iteration__']))198 def batch_to_vars(self, batch):199 # batch to vars200 input_vars = [dict() for elem in batch[0]]201 for elem in batch: # loop about batch202 for i, stage_input in enumerate(elem): # loop about stage input203 for name, input_ in stage_input.items():204 input_vars[i].setdefault(name, []).append(input_)205 return input_vars206 def inference(self, stage_input, is_train=False):207 for key, value in list(stage_input.items()):208 if key not in self.redirect:209 continue210 stage_input[self.redirect[key]] = value211 self.network(mode='train' if is_train else 'valid', **stage_input)212 def write_network_architecture(self, graph_filename, loss):213 with open(graph_filename, 'w+') as o:214 o.write(cg.build_computational_graph((loss, )).dump())215 try:216 subprocess.call('dot -T png {} -o {}'.format(graph_filename,217 graph_filename.replace('.dot', '.png')),218 shell=True)219 except:220 warnings.warn('please install graphviz and set your environment.')221 try:222 subprocess.call('dot -T svg {} -o {}'.format(graph_filename,223 graph_filename.replace('.dot', '.svg')),224 shell=True)225 except:...

Full Screen

Full Screen

__init__.py

Source:__init__.py Github

copy

Full Screen

1from floxcore.command import Stage2from floxcore.context import Flox3from floxcore.plugin import Plugin4from flox_sentry.configure import SentryConfiguration5from flox_sentry.project import create_team, create_project, assing_teams, dump_variables6class SentryPlugin(Plugin):7 def configuration(self):8 return SentryConfiguration()9 def handle_variables(self, flox: Flox):10 return (11 Stage(dump_variables, 1900),12 )13 def handle_project(self, flox: Flox):14 return [15 Stage(create_team, require=["sentry.create_team"]),16 Stage(create_project, 1900),17 Stage(dump_variables, 1900),18 Stage(assing_teams),19 ]20 def configured(self, flox) -> bool:21 return all([flox.settings.sentry.default_team, flox.settings.sentry.organization])22def plugin():...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run lisa automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful