Best Python code snippet using lisa_python
workflow.py
Source:workflow.py
...184 file_output = [_nest_variable(x) for x in file_output]185 std_output = [_nest_variable(x) for x in std_output]186 # For combined output, ensure at the same level (not nested) as main samples187 if step.parallel in ["multi-combined"]:188 file_vs = _merge_variables([_clean_output(_flatten_nested_input(v) if not is_cwl_record(v) else v)189 for v in file_output], file_vs)190 else:191 file_vs = _merge_variables([_clean_output(v) for v in file_output], file_vs)192 std_vs = _merge_variables([_clean_output(v) for v in std_output], std_vs)193 return file_output + std_output, file_vs, std_vs194def _flatten_nested_input(v):195 """Flatten a parallel scatter input -- we only get one of them to tools.196 """197 v = copy.deepcopy(v)198 assert v["type"]["type"] == "array"199 v["type"] = v["type"]["items"]200 return v201def _nest_variable(v):202 """Nest a variable when moving from scattered back to consolidated.203 """204 v = copy.deepcopy(v)205 v["type"] = {"type": "array", "items": v["type"]}206 return v207def _clean_output(v):208 """Remove output specific variables to allow variables to be inputs to next steps.209 """210 out = copy.deepcopy(v)211 outb = out.pop("outputBinding", {})212 if "secondaryFiles" in outb:213 out["secondaryFiles"] = outb["secondaryFiles"]214 return out215def _get_string_vid(vid):216 if isinstance(vid, basestring):217 return vid218 assert isinstance(vid, (list, tuple)), vid219 return "__".join(vid)220def _get_variable(vid, variables):221 """Retrieve an input variable from our existing pool of options.222 """223 if isinstance(vid, basestring):224 vid = get_base_id(vid)225 else:226 vid = _get_string_vid(vid)227 for v in variables:228 if vid == get_base_id(v["id"]):229 return copy.deepcopy(v)230 raise ValueError("Did not find variable %s in \n%s" % (vid, pprint.pformat(variables)))231def _handle_special_inputs(inputs, variables):232 """Adjust input variables based on special cases.233 This case handles inputs where we are optional or can have flexible choices.234 XXX Need to better expose this at a top level definition.235 """236 optional = [["config", "algorithm", "coverage"],237 ["config", "algorithm", "variant_regions"],238 ["config", "algorithm", "sv_regions"],239 ["config", "algorithm", "validate"],240 ["config", "algorithm", "validate_regions"]]241 all_vs = set([get_base_id(v["id"]) for v in variables])242 out = []243 for input in inputs:244 if input == ["reference", "aligner", "indexes"]:245 found_indexes = False246 for v in variables:247 vid = get_base_id(v["id"]).split("__")248 if vid[0] == "reference" and vid[1] in alignment.TOOLS:249 out.append(vid)250 found_indexes = True251 assert found_indexes, "Found no aligner indexes in %s" % [v["id"] for v in variables]252 elif input == ["reference", "snpeff", "genome_build"]:253 found_indexes = False254 for v in variables:255 vid = get_base_id(v["id"]).split("__")256 if vid[0] == "reference" and vid[1] == "snpeff":257 out.append(vid)258 found_indexes = True259 assert found_indexes, "Found no snpEff indexes in %s" % [v["id"] for v in variables]260 elif input in optional:261 if _get_string_vid(input) in all_vs:262 out.append(input)263 else:264 out.append(input)265 return out266def _get_upload_output(vid, variables):267 if isinstance(vid, dict) and "id" in vid:268 parent_v = _get_variable(vid["id"], variables)269 v = copy.deepcopy(vid)270 v["id"] = _get_string_vid(vid["id"])271 v["outputSource"] = parent_v["id"]272 else:273 v = _nest_variable(_get_variable(vid, variables))274 v["outputSource"] = v["id"]275 v["id"] = get_base_id(v["id"])276 v.pop("secondaryFiles", None)277 v["type"].pop("secondaryFiles", None)278 return v279def _create_record(name, field_defs, step_name, inputs, unlist, file_vs, std_vs, parallel):280 """Create an output record by rearranging inputs.281 Batching processes create records that reformat the inputs for282 parallelization.283 """284 if field_defs:285 fields = []286 inherit = []287 inherit_all = False288 for fdef in field_defs:289 if not fdef.get("type"):290 if fdef["id"] == "inherit":291 inherit_all = True292 else:293 inherit.append(fdef["id"])294 else:295 cur = {"name": _get_string_vid(fdef["id"]),296 "type": fdef["type"]}297 fields.append(_add_secondary_to_rec_field(fdef, cur))298 if inherit_all:299 fields.extend(_infer_record_outputs(inputs, unlist, file_vs, std_vs, parallel))300 elif inherit:301 fields.extend(_infer_record_outputs(inputs, unlist + inherit, file_vs, std_vs, parallel, inherit))302 else:303 fields = _infer_record_outputs(inputs, unlist, file_vs, std_vs, parallel)304 out = {"id": "%s/%s" % (step_name, name),305 "type": {"name": name,306 "type": "record",307 "fields": fields}}308 if parallel in ["batch-single", "multi-batch"]:309 out = _nest_variable(out)310 return out311def _add_secondary_to_rec_field(orig, cur):312 # CWL does not currently support secondaryFiles in fields313 if orig.get("secondaryFiles"):314 cur["secondaryFiles"] = orig.get("secondaryFiles")315 return cur316def _infer_record_outputs(inputs, unlist, file_vs, std_vs, parallel, to_include=None):317 """Infer the outputs of a record from the original inputs318 """319 fields = []320 unlist = set([_get_string_vid(x) for x in unlist])321 input_vids = set([_get_string_vid(v) for v in _handle_special_inputs(inputs, file_vs)])322 to_include = set([_get_string_vid(x) for x in to_include]) if to_include else None323 added = set([])324 for raw_v in std_vs + [v for v in file_vs if get_base_id(v["id"]) in input_vids]:325 # unpack record inside this record and un-nested inputs to avoid double nested326 cur_record = is_cwl_record(raw_v)327 if cur_record:328 #unlist = unlist | set([field["name"] for field in cur_record["fields"]])329 nested_vs = [{"id": field["name"], "type": field["type"]} for field in cur_record["fields"]]330 else:331 nested_vs = [raw_v]332 for orig_v in nested_vs:333 if orig_v["id"] not in added and (not to_include or get_base_id(orig_v["id"]) in to_include):334 cur_v = {}335 cur_v["name"] = get_base_id(orig_v["id"])336 cur_v["type"] = orig_v["type"]337 if cur_v["name"] in unlist:338 cur_v = _flatten_nested_input(cur_v)339 if to_include:340 cur_v = _nest_variable(cur_v)341 fields.append(_add_secondary_to_rec_field(orig_v, cur_v))342 added.add(orig_v["id"])343 return fields344def _create_variable(orig_v, step, variables):345 """Create a new output variable, potentially over-writing existing or creating new.346 """347 # get current variable, and convert to be the output of our process step348 try:349 v = _get_variable(orig_v["id"], variables)350 except ValueError:351 v = copy.deepcopy(orig_v)352 if not isinstance(v["id"], basestring):353 v["id"] = _get_string_vid(v["id"])354 for key, val in orig_v.items():355 if key not in ["id", "type"]:356 v[key] = val357 if orig_v.get("type") != "null":358 v["type"] = orig_v["type"]359 v["id"] = "%s/%s" % (step.name, get_base_id(v["id"]))360 return v361def _merge_variables(new, cur):362 """Add any new variables to the world representation in cur.363 Replaces any variables adjusted by previous steps.364 """365 new_added = set([])366 out = []367 for cur_var in cur:368 updated = False369 for new_var in new:370 if get_base_id(new_var["id"]) == get_base_id(cur_var["id"]):371 out.append(new_var)372 new_added.add(new_var["id"])373 updated = True374 break375 if not updated:...
agevalues.py
Source:agevalues.py
...6def _roll(a): # rolls a single die of "a" sides7 return random.randrange(1, a + 1)8910def _merge_variables(race, ch_class): # returns three-item lists [base_age, #ofrolls, #ofsides]11 temp, final, number_of_classes = [], [0, 0, 0], len(ch_class)12 for a in range(number_of_classes):13 temp.append(datalocus.age_variables(race, ch_class[a]))14 for a in range(number_of_classes):15 if final[0] < temp[a][0]:16 final[0] = temp[a][0]17 for a in range(number_of_classes):18 if final[1] * final[2] < temp[a][1] * temp[a][2]:19 final[1], final[2] = temp[a][1], temp[a][2]20 return final212223def _natural_death(race): # accepts ('Human')24 temp = random.choice([0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4]) # returns (96)25 var_value, age_thresholds = [8, 4, 6, 10, 20], datalocus.age_thresholds(race)26 # this calculates the age-span for the relevant category to determine which age_modifier to apply27 term = age_thresholds[4+round(temp/3)] - age_thresholds[3+round(temp/3)]28 age_modifier = 1 * int(term < 100) + 10 * int(100 <= term <= 250) + 20 * int(term > 250)29 # this formula computes the base age corresponding with the temp value30 temp_base = int(age_thresholds[round((temp+6.5)/2)]) + int(temp == 0 or temp == 2)31 # this formula computes the die roll, span modifier and operator corresponding with the temp value32 temp_roll = (_roll(var_value[temp]) * age_modifier + _roll(age_modifier) - 1) * (temp % 2 * -2 + 1)33 return temp_base + temp_roll343536# for i in range(100):37# temp_death = _natural_death("Human")38# print(temp_death)394041def generate_age(race, ch_class, level):42 temp, final, attr_names = _merge_variables(race, ch_class), [], ['Str', 'Int', 'Wis', 'Dex', 'Con', 'Cha', 'Com']43 age = temp[0]44 for a in range(temp[1]):45 age += _roll(temp[2])46 final.append(age - 1 + level)47 final.append(datalocus.age_cat(race, age)[0])48 final.append(datalocus.age_cat(race, age)[1])49 final.append(dict(zip(attr_names, datalocus.age_adj(final[1]))))50 final[3]['Exc'] = 051 final.append(_natural_death(race))52 return final535455# start = time.time()56# testrace = "Korobokuru"
...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!