Best Python code snippet using hypothesis
collections.py
Source:collections.py
1# coding=utf-82#3# This file is part of Hypothesis, which may be found at4# https://github.com/HypothesisWorks/hypothesis/5#6# Most of this work is copyright (C) 2013-2019 David R. MacIver7# (david@drmaciver.com), but it contains contributions by others. See8# CONTRIBUTING.rst for a full list of people who may hold copyright, and9# consult the git log if you need to determine who owns an individual10# contribution.11#12# This Source Code Form is subject to the terms of the Mozilla Public License,13# v. 2.0. If a copy of the MPL was not distributed with this file, You can14# obtain one at https://mozilla.org/MPL/2.0/.15#16# END HEADER17from __future__ import absolute_import, division, print_function18import hypothesis.internal.conjecture.utils as cu19from hypothesis.errors import InvalidArgument20from hypothesis.internal.compat import OrderedDict21from hypothesis.internal.conjecture.utils import combine_labels22from hypothesis.searchstrategy.strategies import MappedSearchStrategy, SearchStrategy23class TupleStrategy(SearchStrategy):24 """A strategy responsible for fixed length tuples based on heterogenous25 strategies for each of their elements."""26 def __init__(self, strategies):27 SearchStrategy.__init__(self)28 self.element_strategies = tuple(strategies)29 def do_validate(self):30 for s in self.element_strategies:31 s.validate()32 def calc_label(self):33 return combine_labels(34 self.class_label, *[s.label for s in self.element_strategies]35 )36 def __repr__(self):37 if len(self.element_strategies) == 1:38 tuple_string = "%s," % (repr(self.element_strategies[0]),)39 else:40 tuple_string = ", ".join(map(repr, self.element_strategies))41 return "TupleStrategy((%s))" % (tuple_string,)42 def calc_has_reusable_values(self, recur):43 return all(recur(e) for e in self.element_strategies)44 def do_draw(self, data):45 return tuple(data.draw(e) for e in self.element_strategies)46 def calc_is_empty(self, recur):47 return any(recur(e) for e in self.element_strategies)48class ListStrategy(SearchStrategy):49 """A strategy for lists which takes a strategy for its elements and the50 allowed lengths, and generates lists with the correct size and contents."""51 def __init__(self, elements, min_size=0, max_size=float("inf")):52 SearchStrategy.__init__(self)53 self.min_size = min_size or 054 self.max_size = max_size if max_size is not None else float("inf")55 assert 0 <= self.min_size <= self.max_size56 self.average_size = min(57 max(self.min_size * 2, self.min_size + 5),58 0.5 * (self.min_size + self.max_size),59 )60 self.element_strategy = elements61 def calc_label(self):62 return combine_labels(self.class_label, self.element_strategy.label)63 def do_validate(self):64 self.element_strategy.validate()65 if self.is_empty:66 raise InvalidArgument(67 (68 "Cannot create non-empty lists with elements drawn from "69 "strategy %r because it has no values."70 )71 % (self.element_strategy,)72 )73 if self.element_strategy.is_empty and 0 < self.max_size < float("inf"):74 raise InvalidArgument(75 "Cannot create a collection of max_size=%r, because no "76 "elements can be drawn from the element strategy %r"77 % (self.max_size, self.element_strategy)78 )79 def calc_is_empty(self, recur):80 if self.min_size == 0:81 return False82 else:83 return recur(self.element_strategy)84 def do_draw(self, data):85 if self.element_strategy.is_empty:86 assert self.min_size == 087 return []88 elements = cu.many(89 data,90 min_size=self.min_size,91 max_size=self.max_size,92 average_size=self.average_size,93 )94 result = []95 while elements.more():96 result.append(data.draw(self.element_strategy))97 return result98 def __repr__(self):99 return "%s(%r, min_size=%r, max_size=%r)" % (100 self.__class__.__name__,101 self.element_strategy,102 self.min_size,103 self.max_size,104 )105class UniqueListStrategy(ListStrategy):106 def __init__(self, elements, min_size, max_size, key):107 super(UniqueListStrategy, self).__init__(elements, min_size, max_size)108 self.key = key109 def do_draw(self, data):110 if self.element_strategy.is_empty:111 assert self.min_size == 0112 return []113 elements = cu.many(114 data,115 min_size=self.min_size,116 max_size=self.max_size,117 average_size=self.average_size,118 )119 seen = set()120 result = []121 while elements.more():122 value = data.draw(self.element_strategy)123 k = self.key(value)124 if k in seen:125 elements.reject()126 else:127 seen.add(k)128 result.append(value)129 assert self.max_size >= len(result) >= self.min_size130 return result131class FixedKeysDictStrategy(MappedSearchStrategy):132 """A strategy which produces dicts with a fixed set of keys, given a133 strategy for each of their equivalent values.134 e.g. {'foo' : some_int_strategy} would generate dicts with the single135 key 'foo' mapping to some integer.136 """137 def __init__(self, strategy_dict):138 self.dict_type = type(strategy_dict)139 if isinstance(strategy_dict, OrderedDict):140 self.keys = tuple(strategy_dict.keys())141 else:142 try:143 self.keys = tuple(sorted(strategy_dict.keys()))144 except TypeError:145 self.keys = tuple(sorted(strategy_dict.keys(), key=repr))146 super(FixedKeysDictStrategy, self).__init__(147 strategy=TupleStrategy((strategy_dict[k] for k in self.keys))148 )149 def calc_is_empty(self, recur):150 return recur(self.mapped_strategy)151 def __repr__(self):152 return "FixedKeysDictStrategy(%r, %r)" % (self.keys, self.mapped_strategy)153 def pack(self, value):...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!