How to use count_step method in hypothesis

Best Python code snippet using hypothesis

prediction.py

Source:prediction.py Github

copy

Full Screen

1import numpy as np2class Prediction:3 def train(self, method_str, method, state, action, max_episodes, max_steps, file_log, state_kinds=None):4 episode_total_reward = []5 episode_step_reward = []6 episode_mae = []7 action_true = []8 action_predict = []9 for episode in range(max_episodes):10 episode_reward = 011 count_step = 012 index = np.random.choice(range(len(state)))13 s = state[index]14 if method_str == "DF-DQN":15 kind = state_kinds[index]16 for step in range(max_steps):17 count_step += 118 a_true = action[index]19 action_true.append(a_true)20 if method_str == "DQN":21 a, a_value = method.choose_action(state=s, stage="train")22 action_predict.append(a_value)23 r = -abs(a_value - a_true)24 elif method_str == "DF-DQN":25 a, a_value = method.choose_action(state=s, kind=kind, stage="train")26 action_predict.append(a_value)27 r = -abs(a_value - a_true)28 elif method_str == "DDPG":29 a = method.choose_action(state=s, stage="train")30 a = np.reshape(a, (1, -1))[0][0]31 action_predict.append(a)32 r = -abs(a - a_true)33 episode_step_reward.append(r)34 episode_reward += r35 index += 136 if index == len(state):37 break38 s_ = state[index]39 if method_str == "DF-DQN":40 kind = state_kinds[index]41 method.store_transition(s, a, r, s_)42 method.learn(count_step)43 if (index == len(state) - 1) or (step == max_steps - 1):44 episode_total_reward.append(episode_reward) # 保存每个回合的累计奖赏45 print('Episode %d : %.2f' % (episode, episode_reward))46 file_log.write('Episode %d : %.2f\n' % (episode, episode_reward)) # 打印回合数和奖赏累计值47 break48 s = s_49 episode_reward = np.reshape(episode_reward, (1, -1))[0][0]50 episode_mae.append((-episode_reward) / count_step) # 计算每回合的mae,看收敛情况51 return method, episode_mae, action_predict, action_true, episode_step_reward # 将训练好的agent返回出去52 def prediction(self, method_str, method, state, action, state_kinds=None):53 action_predict = []54 action_true = []55 for i in range(len(state)):56 s = state[i]57 if method_str == "DF-DQN":58 kind = state_kinds[i]59 action_true.append(action[i])60 if method_str == "DQN":61 a, a_value = method.choose_action(state=s, stage="test")62 action_predict.append(a_value)63 elif method_str == "DF-DQN":64 a, a_value = method.choose_action(state=s, kind=kind, stage="test")65 action_predict.append(a_value)66 elif method_str == "DDPG":67 a = method.choose_action(state=s, stage="test")68 a = np.reshape(a, (1, -1))[0][0]69 action_predict.append(a)...

Full Screen

Full Screen

pedometer.py

Source:pedometer.py Github

copy

Full Screen

...10gz = [] # the gyroscope of z-axis11i_step = []12flag = False1314def count_step(g_window):15 # applying fft algorithm16 sliding_window = len(g_window)17 T = 0.05 # 50ms18 g_windowf = fft(g_window)19 g_f = 2.0/sliding_window * np.abs(g_windowf[0:sliding_window//2])20 xf = np.linspace(0.0, 1.0/(2.0*T), sliding_window//2)2122 index = np.where(np.logical_and(xf>=0.6, xf<=2))23 index_1 = np.where(np.logical_and(xf>=0, xf<=0.6))24 if index[0].size == 0:25 return 026 else:27 xf_between = xf[index]28 g_windowf_between = g_f[index]29 # g_windowf_between_1 = g_f[index_1]30 if np.mean(g_windowf_between) >= 2.5:31 index_max = np.where(g_windowf_between == max(g_windowf_between))32 count_step = xf_between[index_max[0][0]]*1.233 return count_step34 else:35 return 03637while True:38 cc = str(ser.readline())39 raw_data = cc.split(",")40 if (len(cc)<16) or len(raw_data) != 3:41 continue42 else:43 gz.append(float(raw_data[1]))4445 if len(gz)% 50 == 0:46 flag = True47 i_th_step = round(count_step(gz))48 i_step.append(i_th_step)49 if i_th_step == 0:50 flag = False51 gz = []52 os.system('cls')53 if flag:54 print("Current Status: Walking")55 print("Step Count:", sum(i_step))56 else:57 print("Current Status: Standing or Typing") ...

Full Screen

Full Screen

Fibonacci, Quantas Chamadas - 1029.py

Source:Fibonacci, Quantas Chamadas - 1029.py Github

copy

Full Screen

1def fibonacci(n, computed = {0: 0, 1: 1}):2 if n not in computed:3 computed[n] = fibonacci(n-1, computed) + fibonacci(n-2, computed)4 return computed[n]567def count_step_fibonacci(n, count_step = {0: 0, 1: 0, 2: 2}):8 if n not in count_step:9 count_step[n] = count_step_fibonacci(n-1, count_step) + count_step_fibonacci(n-2, count_step) + 210 return count_step[n]111213num = int(input())14inputs = []15for x in range(0, num):16 try:17 read = input()18 if read is '':19 break20 inputs.append(int(read))21 except EOFError:22 break232425for number in inputs: ...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run hypothesis automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful