Best Python code snippet using grail_python
ExtendedKalmanFilter.py
Source:ExtendedKalmanFilter.py
...36 elif self.x[2,:] > np.pi:37 self.x[2,:] = self.x[2,:] - 2*np.pi38 else:39 pass40 def external_step(self, u):41 self.internal_step(u)42 z = np.matmul(self.C, self.x) + np.reshape(self.v_sig * np.random.randn(2), (2,1))43 return z44class ExtendedKalmanFilter(object):45 def __init__(self, T=0.05):46 self.T = T47 self.X = np.array([0,0,0], dtype=float).reshape([-1,1])48 self.P = np.diag([2,2,2])49 self.Q = self.T * np.diag([0,0,0.04])50 self.R = np.diag([0.01,0.01])/self.T51 self.H = np.array([52 [1,0,0],53 [0,1,0],54 ], dtype=float)55 def prediction(self,u):56 dX_pre = np.zeros((3,1), dtype=float)57 dX_pre[0,:] = u[0] * np.cos(self.X[2,:])58 dX_pre[1,:] = u[0] * np.sin(self.X[2,:])59 dX_pre[2,:] = u[1]60 self.X += (self.T * dX_pre)61 if self.X[2,:] < -np.pi:62 self.X[2,:] = self.x[2,:] + 2*np.pi63 elif self.X[2,:] > np.pi:64 self.X[2,:] = self.x[2,:] - 2*np.pi65 else:66 pass67 68 self.calc_F(self.X,u)69 self.P = self.F.dot(self.P).dot(self.F.T) + self.Q70 def correction(self, Z):71 K = self.P.dot(self.H.T).dot(np.linalg.inv(self.H.dot(self.P).dot(self.H.T) + self.R))72 Y = self.H.dot(self.X)73 self.X = self.X + K.dot(Z-Y)74 self.P = self.P - K.dot(self.H).dot(self.P)75 def calc_F(self, x, u):76 self.F = np.zeros_like(self.Q, dtype=float)77 self.F[0,2] = -u[0]*np.sin(x[2,:])78 self.F[1,2] = u[0] *np.cos(x[2,:])79 self.F = np.identity(x.shape[0]) + self.T * self.F80x_hat_hist, P_hist, z_hist, p_actual = [], [], [], []81env = UNICAR()82env.init_state()83ekf_estimator = ExtendedKalmanFilter()84u = 0.5 * np.ones((100,2))85for i in range(100):86 z = env.external_step(u[i,:])87 ekf_estimator.prediction(u[i,:])88 ekf_estimator.correction(z)89 print(ekf_estimator.X)90 x_hat_hist.append(ekf_estimator.X)91 P_hist.append(ekf_estimator.P)92 z_hist.append(z)93 p_actual.append(env.x[:2,:])94pos_hat = np.matmul(ekf_estimator.H, np.hstack(x_hat_hist))95z_np = np.hstack(z_hist)96p_np = np.hstack(p_actual)97plt.figure(figsize=(15,15))98plt.plot(pos_hat[0,:], pos_hat[1,:],"r-")99plt.plot(z_np[0,:], z_np[1,:], "k-")100plt.plot(p_np[0,:], p_np[1,:],"b-")...
KalmanFilter.py
Source:KalmanFilter.py
...15 self.w_sig = w_sig16 self.v_sig = v_sig17 def internal_step(self, u):18 self.x = np.matmul(self.Ad, self.x) + self.Bd * u + self.w_sig * np.random.randn(1)19 def external_step(self,u):20 self.internal_step(u)21 z = np.matmul(self.C, self.x) + self.v_sig * np.random.randn(1)22 return z23class KALMANFilter(object):24 def __init__(self, T=0.1, Q=np.diag([0,0.25]),R=1):25 self.T = T26 self.A = np.array([[0,1],[0,0]])27 self.B = np.array([[0],[1]])28 self.Ad = np.identity(2) + self.T * self.A29 self.Bd = self.T * self.B30 self.C = np.array([[1,0]])31 self.x_hat = np.array([[0],[0]])32 self.P = np.diag([10,10])33 self.Q = Q34 self.R = R/self.T35 def prediction(self, u):36 self.x_hat = np.matmul(self.Ad, self.x_hat) + self.Bd * u37 self.P = np.matmul(np.matmul(self.Ad, self.P), self.Ad.T) + self.Q38 def measurement(self, z):39 S = np.matmul(self.C, np.matmul(self.P, self.C.T))+ self.R40 K = np.matmul(np.matmul(self.P,self.C.T),np.linalg.inv(S))41 self.x_hat = self.x_hat + np.matmul(K, (z - np.matmul(self.C, self.x_hat)))42 self.P = np.matmul(np.identity(2) - np.matmul(K, self.C), self.P)43x_hat_hist = []44p_hist = []45z_hist = []46v_actual =[]47env = one_dim_env()48estimator = KALMANFilter()49u = np.concatenate([np.ones((30,)), np.zeros((40,)), -0.5*np.ones((30,))])50for i in range(100):51 z = env.external_step(u[i])52 estimator.prediction(u[i])53 estimator.measurement(z)54 x_hat_hist.append(estimator.x_hat)55 p_hist.append(estimator.P)56 z_hist.append(z)57 v_actual.append(env.x[1,:])58pos_hat = np.matmul(estimator.C, np.hstack(x_hat_hist)).squeeze(0)59vel_hat = np.hstack(x_hat_hist)[1,:]60sig_p = np.sqrt(np.vstack(p_hist).reshape([-1,2,2])[:,0,0])61sig_v = np.sqrt(np.vstack(p_hist).reshape([-1,2,2])[:,1,1])62z_np = np.hstack(z_hist).squeeze()63v_np = np.hstack(v_actual).squeeze()64con=365plt.figure(figsize=(20, 20))...
7_treat_nested_steps_as_methods.py
Source:7_treat_nested_steps_as_methods.py
1from grail import BaseTest, step2class DoItInVerySpecialCases(BaseTest):3 def test_its_not_recommended_to_do_this(self):4 self.external_step()5 @step(treat_nested_steps_as_methods=True)6 def external_step(self):7 self.this_is_not_a_step_anymore()8 @step9 def this_is_not_a_step_anymore(self):...
Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.
You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.
Get 100 minutes of automation test minutes FREE!!