How to use external_step method in grail

Best Python code snippet using grail_python

ExtendedKalmanFilter.py

Source:ExtendedKalmanFilter.py Github

copy

Full Screen

...36 elif self.x[2,:] > np.pi:37 self.x[2,:] = self.x[2,:] - 2*np.pi38 else:39 pass40 def external_step(self, u):41 self.internal_step(u)42 z = np.matmul(self.C, self.x) + np.reshape(self.v_sig * np.random.randn(2), (2,1))43 return z44class ExtendedKalmanFilter(object):45 def __init__(self, T=0.05):46 self.T = T47 self.X = np.array([0,0,0], dtype=float).reshape([-1,1])48 self.P = np.diag([2,2,2])49 self.Q = self.T * np.diag([0,0,0.04])50 self.R = np.diag([0.01,0.01])/self.T51 self.H = np.array([52 [1,0,0],53 [0,1,0],54 ], dtype=float)55 def prediction(self,u):56 dX_pre = np.zeros((3,1), dtype=float)57 dX_pre[0,:] = u[0] * np.cos(self.X[2,:])58 dX_pre[1,:] = u[0] * np.sin(self.X[2,:])59 dX_pre[2,:] = u[1]60 self.X += (self.T * dX_pre)61 if self.X[2,:] < -np.pi:62 self.X[2,:] = self.x[2,:] + 2*np.pi63 elif self.X[2,:] > np.pi:64 self.X[2,:] = self.x[2,:] - 2*np.pi65 else:66 pass67 68 self.calc_F(self.X,u)69 self.P = self.F.dot(self.P).dot(self.F.T) + self.Q70 def correction(self, Z):71 K = self.P.dot(self.H.T).dot(np.linalg.inv(self.H.dot(self.P).dot(self.H.T) + self.R))72 Y = self.H.dot(self.X)73 self.X = self.X + K.dot(Z-Y)74 self.P = self.P - K.dot(self.H).dot(self.P)75 def calc_F(self, x, u):76 self.F = np.zeros_like(self.Q, dtype=float)77 self.F[0,2] = -u[0]*np.sin(x[2,:])78 self.F[1,2] = u[0] *np.cos(x[2,:])79 self.F = np.identity(x.shape[0]) + self.T * self.F80x_hat_hist, P_hist, z_hist, p_actual = [], [], [], []81env = UNICAR()82env.init_state()83ekf_estimator = ExtendedKalmanFilter()84u = 0.5 * np.ones((100,2))85for i in range(100):86 z = env.external_step(u[i,:])87 ekf_estimator.prediction(u[i,:])88 ekf_estimator.correction(z)89 print(ekf_estimator.X)90 x_hat_hist.append(ekf_estimator.X)91 P_hist.append(ekf_estimator.P)92 z_hist.append(z)93 p_actual.append(env.x[:2,:])94pos_hat = np.matmul(ekf_estimator.H, np.hstack(x_hat_hist))95z_np = np.hstack(z_hist)96p_np = np.hstack(p_actual)97plt.figure(figsize=(15,15))98plt.plot(pos_hat[0,:], pos_hat[1,:],"r-")99plt.plot(z_np[0,:], z_np[1,:], "k-")100plt.plot(p_np[0,:], p_np[1,:],"b-")...

Full Screen

Full Screen

KalmanFilter.py

Source:KalmanFilter.py Github

copy

Full Screen

...15 self.w_sig = w_sig16 self.v_sig = v_sig17 def internal_step(self, u):18 self.x = np.matmul(self.Ad, self.x) + self.Bd * u + self.w_sig * np.random.randn(1)19 def external_step(self,u):20 self.internal_step(u)21 z = np.matmul(self.C, self.x) + self.v_sig * np.random.randn(1)22 return z23class KALMANFilter(object):24 def __init__(self, T=0.1, Q=np.diag([0,0.25]),R=1):25 self.T = T26 self.A = np.array([[0,1],[0,0]])27 self.B = np.array([[0],[1]])28 self.Ad = np.identity(2) + self.T * self.A29 self.Bd = self.T * self.B30 self.C = np.array([[1,0]])31 self.x_hat = np.array([[0],[0]])32 self.P = np.diag([10,10])33 self.Q = Q34 self.R = R/self.T35 def prediction(self, u):36 self.x_hat = np.matmul(self.Ad, self.x_hat) + self.Bd * u37 self.P = np.matmul(np.matmul(self.Ad, self.P), self.Ad.T) + self.Q38 def measurement(self, z):39 S = np.matmul(self.C, np.matmul(self.P, self.C.T))+ self.R40 K = np.matmul(np.matmul(self.P,self.C.T),np.linalg.inv(S))41 self.x_hat = self.x_hat + np.matmul(K, (z - np.matmul(self.C, self.x_hat)))42 self.P = np.matmul(np.identity(2) - np.matmul(K, self.C), self.P)43x_hat_hist = []44p_hist = []45z_hist = []46v_actual =[]47env = one_dim_env()48estimator = KALMANFilter()49u = np.concatenate([np.ones((30,)), np.zeros((40,)), -0.5*np.ones((30,))])50for i in range(100):51 z = env.external_step(u[i])52 estimator.prediction(u[i])53 estimator.measurement(z)54 x_hat_hist.append(estimator.x_hat)55 p_hist.append(estimator.P)56 z_hist.append(z)57 v_actual.append(env.x[1,:])58pos_hat = np.matmul(estimator.C, np.hstack(x_hat_hist)).squeeze(0)59vel_hat = np.hstack(x_hat_hist)[1,:]60sig_p = np.sqrt(np.vstack(p_hist).reshape([-1,2,2])[:,0,0])61sig_v = np.sqrt(np.vstack(p_hist).reshape([-1,2,2])[:,1,1])62z_np = np.hstack(z_hist).squeeze()63v_np = np.hstack(v_actual).squeeze()64con=365plt.figure(figsize=(20, 20))...

Full Screen

Full Screen

7_treat_nested_steps_as_methods.py

Source:7_treat_nested_steps_as_methods.py Github

copy

Full Screen

1from grail import BaseTest, step2class DoItInVerySpecialCases(BaseTest):3 def test_its_not_recommended_to_do_this(self):4 self.external_step()5 @step(treat_nested_steps_as_methods=True)6 def external_step(self):7 self.this_is_not_a_step_anymore()8 @step9 def this_is_not_a_step_anymore(self):...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run grail automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful