How to use test_input_files method in gabbi

Best Python code snippet using gabbi_python

datasets.py

Source:datasets.py Github

copy

Full Screen

1import glob2import random3import os4import numpy as np5import torch6import cv27from torch.utils.data import Dataset8from PIL import Image9import torchvision.transforms as transforms10import torchvision.transforms.functional as TF11import torchvision_x_functional as TF_x12class ImageDataset_sRGB(Dataset):13 def __init__(self, root, mode="train", unpaird_data="fiveK", combined=True):14 self.mode = mode15 self.unpaird_data = unpaird_data16 file = open(os.path.join(root,'train_input.txt'),'r')17 set1_input_files = sorted(file.readlines())18 self.set1_input_files = list()19 self.set1_expert_files = list()20 for i in range(len(set1_input_files)):21 self.set1_input_files.append(os.path.join(root,"raw",set1_input_files[i][:-1]))22 self.set1_expert_files.append(os.path.join(root,"retouched",set1_input_files[i][:-1]))23 #file = open(os.path.join(root,'train_label.txt'),'r')24 #set2_input_files = sorted(file.readlines())25 #self.set2_input_files = list()26 #self.set2_expert_files = list()27 #for i in range(len(set2_input_files)):28 # self.set2_input_files.append(os.path.join(root,"raw", set2_input_files[i][:-1]))29 # self.set2_expert_files.append(os.path.join(root,"retouched", set2_input_files[i][:-1]))30 file = open(os.path.join(root,'test.txt'),'r')31 test_input_files = sorted(file.readlines())32 self.test_input_files = list()33 self.test_expert_files = list()34 for i in range(len(test_input_files)):35 self.test_input_files.append(os.path.join(root, "raw", test_input_files[i][:-1]))36 self.test_expert_files.append(os.path.join(root,"retouched", test_input_files[i][:-1]))37 if combined:38 self.set1_input_files = self.set1_input_files #+ self.set2_input_files39 self.set1_expert_files = self.set1_expert_files #+ self.set2_expert_files40 def __getitem__(self, index):41 if self.mode == "train":42 img_name = os.path.split(self.set1_input_files[index % len(self.set1_input_files)])[-1]43 img_input = Image.open(self.set1_input_files[index % len(self.set1_input_files)])44 img_exptC = Image.open(self.set1_expert_files[index % len(self.set1_expert_files)])45 elif self.mode == "test":46 img_name = os.path.split(self.test_input_files[index % len(self.test_input_files)])[-1]47 img_input = Image.open(self.test_input_files[index % len(self.test_input_files)])48 img_exptC = Image.open(self.test_expert_files[index % len(self.test_expert_files)])49 if self.mode == "train":50 ratio_H = np.random.uniform(0.6,1.0)51 ratio_W = np.random.uniform(0.6,1.0)52 W,H = img_input._size53 crop_h = round(H*ratio_H)54 crop_w = round(W*ratio_W)55 i, j, h, w = transforms.RandomCrop.get_params(img_input, output_size=(crop_h, crop_w))56 img_input = TF.crop(img_input, i, j, h, w)57 img_exptC = TF.crop(img_exptC, i, j, h, w)58 #img_input = TF.resized_crop(img_input, i, j, h, w, (320,320))59 #img_exptC = TF.resized_crop(img_exptC, i, j, h, w, (320,320))60 if np.random.random() > 0.5:61 img_input = TF.hflip(img_input)62 img_exptC = TF.hflip(img_exptC)63 a = np.random.uniform(0.8,1.2)64 img_input = TF.adjust_brightness(img_input,a)65 a = np.random.uniform(0.8,1.2)66 img_input = TF.adjust_saturation(img_input,a)67 img_input = TF.to_tensor(img_input)68 img_exptC = TF.to_tensor(img_exptC)69 return {"A_input": img_input, "A_exptC": img_exptC, "input_name": img_name}70 def __len__(self):71 if self.mode == "train":72 return len(self.set1_input_files)73 elif self.mode == "test":74 return len(self.test_input_files)75class ImageDataset_XYZ(Dataset):76 def __init__(self, root, mode="train", unpaird_data="fiveK", combined=True):77 self.mode = mode78 file = open(os.path.join(root,'train_input.txt'),'r')79 set1_input_files = sorted(file.readlines())80 self.set1_input_files = list()81 self.set1_expert_files = list()82 for i in range(len(set1_input_files)):83 self.set1_input_files.append(os.path.join(root,"raw", set1_input_files[i][:-1]))84 self.set1_expert_files.append(os.path.join(root,"retouched",set1_input_files[i][:-1]))85 #file = open(os.path.join(root,'train_input.txt'),'r')86 #set2_input_files = sorted(file.readlines())87 #self.set2_input_files = list()88 #self.set2_expert_files = list()89 #for i in range(len(set2_input_files)):90 # self.set2_input_files.append(os.path.join(root,"raw", set2_input_files[i][:-1]))91 # self.set2_expert_files.append(os.path.join(root,"retouched", set2_input_files[i][:-1]))92 file = open(os.path.join(root,'train_input.txt'),'r')93 test_input_files = sorted(file.readlines())94 self.test_input_files = list()95 self.test_expert_files = list()96 for i in range(len(test_input_files)):97 self.test_input_files.append(os.path.join(root,"raw", test_input_files[i][:-1]))98 self.test_expert_files.append(os.path.join(root,"retouched", test_input_files[i][:-1]))99 if combined:100 self.set1_input_files = self.set1_input_files #+ self.set2_input_files101 self.set1_expert_files = self.set1_expert_files #+ self.set2_expert_files102 def __getitem__(self, index):103 if self.mode == "train":104 img_name = os.path.split(self.set1_input_files[index % len(self.set1_input_files)])[-1]105 img_input = cv2.imread(self.set1_input_files[index % len(self.set1_input_files)],-1)106 img_exptC = Image.open(self.set1_expert_files[index % len(self.set1_expert_files)])107 elif self.mode == "test":108 img_name = os.path.split(self.test_input_files[index % len(self.test_input_files)])[-1]109 img_input = cv2.imread(self.test_input_files[index % len(self.test_input_files)],-1)110 img_exptC = Image.open(self.test_expert_files[index % len(self.test_expert_files)])111 #img_input = np.array(img_input)112 img_input = np.array(cv2.cvtColor(img_input,cv2.COLOR_BGR2RGB))113 if self.mode == "train":114 ratio_H = np.random.uniform(0.6,1.0)115 ratio_W = np.random.uniform(0.6,1.0)116 W,H = img_exptC._size117 crop_h = round(H*ratio_H)118 crop_w = round(W*ratio_W)119 i, j, h, w = transforms.RandomCrop.get_params(img_exptC, output_size=(crop_h, crop_w))120 img_input = TF_x.crop(img_input, i, j, h, w)121 img_exptC = TF.crop(img_exptC, i, j, h, w)122 if np.random.random() > 0.5:123 img_input = TF_x.hflip(img_input)124 img_exptC = TF.hflip(img_exptC)125 a = np.random.uniform(0.6,1.4)126 img_input = TF_x.adjust_brightness(img_input,a)127 img_input = TF_x.to_tensor(img_input)128 img_exptC = TF.to_tensor(img_exptC)129 return {"A_input": img_input, "A_exptC": img_exptC, "input_name": img_name}130 def __len__(self):131 if self.mode == "train":132 return len(self.set1_input_files)133 elif self.mode == "test":134 return len(self.test_input_files)135class ImageDataset_sRGB_unpaired(Dataset):136 def __init__(self, root, mode="train", unpaird_data="fiveK"):137 self.mode = mode138 self.unpaird_data = unpaird_data139 file = open(os.path.join(root,'train_input.txt'),'r')140 set1_input_files = sorted(file.readlines())141 self.set1_input_files = list()142 self.set1_expert_files = list()143 for i in range(len(set1_input_files)):144 self.set1_input_files.append(os.path.join(root,"raw", set1_input_files[i][:-1]))145 self.set1_expert_files.append(os.path.join(root,"retouched", set1_input_files[i][:-1]))146 file = open(os.path.join(root,'train_label.txt'),'r')147 set2_input_files = sorted(file.readlines())148 self.set2_input_files = list()149 self.set2_expert_files = list()150 for i in range(len(set2_input_files)):151 self.set2_input_files.append(os.path.join(root,"raw",set2_input_files[i][:-1]))152 self.set2_expert_files.append(os.path.join(root,"retouched",set2_input_files[i][:-1]))153 file = open(os.path.join(root,'test.txt'),'r')154 test_input_files = sorted(file.readlines())155 self.test_input_files = list()156 self.test_expert_files = list()157 for i in range(len(test_input_files)):158 self.test_input_files.append(os.path.join(root,"raw", test_input_files[i][:-1]))159 self.test_expert_files.append(os.path.join(root,"retouched", test_input_files[i][:-1]))160 def __getitem__(self, index):161 if self.mode == "train":162 img_name = os.path.split(self.set1_input_files[index % len(self.set1_input_files)])[-1]163 img_input = Image.open(self.set1_input_files[index % len(self.set1_input_files)])164 img_exptC = Image.open(self.set1_expert_files[index % len(self.set1_expert_files)])165 seed = random.randint(1,len(self.set2_expert_files))166 img2 = Image.open(self.set2_expert_files[(index + seed) % len(self.set2_expert_files)])167 elif self.mode == "test":168 img_name = os.path.split(self.test_input_files[index % len(self.test_input_files)])[-1]169 img_input = Image.open(self.test_input_files[index % len(self.test_input_files)])170 img_exptC = Image.open(self.test_expert_files[index % len(self.test_expert_files)])171 img2 = img_exptC172 if self.mode == "train":173 ratio_H = np.random.uniform(0.6,1.0)174 ratio_W = np.random.uniform(0.6,1.0)175 W,H = img_input._size176 crop_h = round(H*ratio_H)177 crop_w = round(W*ratio_W)178 W2,H2 = img2._size179 crop_h = min(crop_h,H2)180 crop_w = min(crop_w,W2)181 i, j, h, w = transforms.RandomCrop.get_params(img_input, output_size=(crop_h, crop_w))182 img_input = TF.crop(img_input, i, j, h, w)183 img_exptC = TF.crop(img_exptC, i, j, h, w)184 i, j, h, w = transforms.RandomCrop.get_params(img2, output_size=(crop_h, crop_w))185 img2 = TF.crop(img2, i, j, h, w)186 if np.random.random() > 0.5:187 img_input = TF.hflip(img_input)188 img_exptC = TF.hflip(img_exptC)189 if np.random.random() > 0.5:190 img2 = TF.hflip(img2)191 #if np.random.random() > 0.5:192 # img_input = TF.vflip(img_input)193 # img_exptC = TF.vflip(img_exptC)194 # img2 = TF.vflip(img2)195 a = np.random.uniform(0.6,1.4)196 img_input = TF.adjust_brightness(img_input,a)197 a = np.random.uniform(0.8,1.2)198 img_input = TF.adjust_saturation(img_input,a)199 img_input = TF.to_tensor(img_input)200 img_exptC = TF.to_tensor(img_exptC)201 img2 = TF.to_tensor(img2)202 return {"A_input": img_input, "A_exptC": img_exptC, "B_exptC": img2, "input_name": img_name}203 def __len__(self):204 if self.mode == "train":205 return len(self.set1_input_files)206 elif self.mode == "test":207 return len(self.test_input_files)208class ImageDataset_XYZ_unpaired(Dataset):209 def __init__(self, root, mode="train", unpaird_data="fiveK"):210 self.mode = mode211 self.unpaird_data = unpaird_data212 file = open(os.path.join(root,'train_input.txt'),'r')213 set1_input_files = sorted(file.readlines())214 self.set1_input_files = list()215 self.set1_expert_files = list()216 for i in range(len(set1_input_files)):217 self.set1_input_files.append(os.path.join(root,"raw",set1_input_files[i][:-1]))218 self.set1_expert_files.append(os.path.join(root,"retouched",set1_input_files[i][:-1]))219 file = open(os.path.join(root,'train_label.txt'),'r')220 set2_input_files = sorted(file.readlines())221 self.set2_input_files = list()222 self.set2_expert_files = list()223 for i in range(len(set2_input_files)):224 self.set2_input_files.append(os.path.join(root,"raw",set2_input_files[i][:-1]))225 self.set2_expert_files.append(os.path.join(root,"retouched",set2_input_files[i][:-1]))226 file = open(os.path.join(root,'test.txt'),'r')227 test_input_files = sorted(file.readlines())228 self.test_input_files = list()229 self.test_expert_files = list()230 for i in range(len(test_input_files)):231 self.test_input_files.append(os.path.join(root,"raw",test_input_files[i][:-1]))232 self.test_expert_files.append(os.path.join(root,"retouched",test_input_files[i][:-1]))233 def __getitem__(self, index):234 if self.mode == "train":235 img_name = os.path.split(self.set1_input_files[index % len(self.set1_input_files)])[-1]236 img_input = cv2.imread(self.set1_input_files[index % len(self.set1_input_files)],-1)237 img_exptC = Image.open(self.set1_expert_files[index % len(self.set1_expert_files)])238 seed = random.randint(1,len(self.set2_expert_files))239 img2 = Image.open(self.set2_expert_files[(index + seed) % len(self.set2_expert_files)])240 elif self.mode == "test":241 img_name = os.path.split(self.test_input_files[index % len(self.test_input_files)])[-1]242 img_input = cv2.imread(self.test_input_files[index % len(self.test_input_files)],-1)243 img_exptC = Image.open(self.test_expert_files[index % len(self.test_expert_files)])244 img2 = img_exptC245 img_input = np.array(img_input)246 #img_input = np.array(cv2.cvtColor(img_input,cv2.COLOR_BGR2RGB))247 if self.mode == "train":248 ratio_H = np.random.uniform(0.6,1.0)249 ratio_W = np.random.uniform(0.6,1.0)250 W,H = img_exptC._size251 crop_h = round(H*ratio_H)252 crop_w = round(W*ratio_W)253 W2,H2 = img2._size254 crop_h = min(crop_h,H2)255 crop_w = min(crop_w,W2)256 i, j, h, w = transforms.RandomCrop.get_params(img_exptC, output_size=(crop_h, crop_w))257 img_input = TF_x.crop(img_input, i, j, h, w)258 img_exptC = TF.crop(img_exptC, i, j, h, w)259 i, j, h, w = transforms.RandomCrop.get_params(img2, output_size=(crop_h, crop_w))260 img2 = TF.crop(img2, i, j, h, w)261 if np.random.random() > 0.5:262 img_input = TF_x.hflip(img_input)263 img_exptC = TF.hflip(img_exptC)264 if np.random.random() > 0.5:265 img2 = TF.hflip(img2)266 a = np.random.uniform(0.6,1.4)267 img_input = TF_x.adjust_brightness(img_input,a)268 img_input = TF_x.to_tensor(img_input)269 img_exptC = TF.to_tensor(img_exptC)270 img2 = TF.to_tensor(img2)271 return {"A_input": img_input, "A_exptC": img_exptC, "B_exptC": img2, "input_name": img_name}272 def __len__(self):273 if self.mode == "train":274 return len(self.set1_input_files)275 elif self.mode == "test":276 return len(self.test_input_files)277class ImageDataset_HDRplus(Dataset):278 def __init__(self, root, mode="train", combined=True):279 self.mode = mode280 file = open(os.path.join(root,'train.txt'),'r')281 set1_input_files = sorted(file.readlines())282 self.set1_input_files = list()283 self.set1_expert_files = list()284 for i in range(len(set1_input_files)):285 self.set1_input_files.append(os.path.join(root,"middle_480p",set1_input_files[i][:-1] + ".png"))286 self.set1_expert_files.append(os.path.join(root,"output_480p",set1_input_files[i][:-1] + ".jpg"))287 file = open(os.path.join(root,'test.txt'),'r')288 test_input_files = sorted(file.readlines())289 self.test_input_files = list()290 self.test_expert_files = list()291 for i in range(len(test_input_files)):292 self.test_input_files.append(os.path.join(root,"middle_480p",test_input_files[i][:-1] + ".png"))293 self.test_expert_files.append(os.path.join(root,"output_480p",test_input_files[i][:-1] + ".jpg"))294 def __getitem__(self, index):295 if self.mode == "train":296 img_name = os.path.split(self.set1_input_files[index % len(self.set1_input_files)])[-1]297 img_input = cv2.imread(self.set1_input_files[index % len(self.set1_input_files)],-1)298 img_exptC = Image.open(self.set1_expert_files[index % len(self.set1_expert_files)])299 elif self.mode == "test":300 img_name = os.path.split(self.test_input_files[index % len(self.test_input_files)])[-1]301 img_input = cv2.imread(self.test_input_files[index % len(self.test_input_files)],-1)302 img_exptC = Image.open(self.test_expert_files[index % len(self.test_expert_files)])303 img_input = np.array(img_input)304 #img_input = np.array(cv2.cvtColor(img_input,cv2.COLOR_BGR2RGB))305 if self.mode == "train":306 ratio = np.random.uniform(0.6,1.0)307 W,H = img_exptC._size308 crop_h = round(H*ratio)309 crop_w = round(W*ratio)310 i, j, h, w = transforms.RandomCrop.get_params(img_exptC, output_size=(crop_h, crop_w))311 try:312 img_input = TF_x.crop(img_input, i, j, h, w)313 except:314 print(crop_h,crop_w,img_input.shape())315 img_exptC = TF.crop(img_exptC, i, j, h, w)316 if np.random.random() > 0.5:317 img_input = TF_x.hflip(img_input)318 img_exptC = TF.hflip(img_exptC)319 a = np.random.uniform(0.6,1.4)320 img_input = TF_x.adjust_brightness(img_input,a)321 #a = np.random.uniform(0.8,1.2)322 #img_input = TF_x.adjust_saturation(img_input,a)323 img_input = TF_x.to_tensor(img_input)324 img_exptC = TF.to_tensor(img_exptC)325 return {"A_input": img_input, "A_exptC": img_exptC, "input_name": img_name}326 def __len__(self):327 if self.mode == "train":328 return len(self.set1_input_files)329 elif self.mode == "test":330 return len(self.test_input_files)331class ImageDataset_HDRplus_unpaired(Dataset):332 def __init__(self, root, mode="train"):333 self.mode = mode334 file = open(os.path.join(root,'train.txt'),'r')335 set1_input_files = sorted(file.readlines())336 self.set1_input_files = list()337 self.set1_expert_files = list()338 for i in range(len(set1_input_files)):339 self.set1_input_files.append(os.path.join(root,"middle_480p",set1_input_files[i][:-1] + ".png"))340 self.set1_expert_files.append(os.path.join(root,"output_480p",set1_input_files[i][:-1] + ".jpg"))341 file = open(os.path.join(root,'train.txt'),'r')342 set2_input_files = sorted(file.readlines())343 self.set2_input_files = list()344 self.set2_expert_files = list()345 for i in range(len(set2_input_files)):346 self.set2_input_files.append(os.path.join(root,"middle_480p",set2_input_files[i][:-1] + ".png"))347 self.set2_expert_files.append(os.path.join(root,"output_480p",set2_input_files[i][:-1] + ".jpg"))348 file = open(os.path.join(root,'test.txt'),'r')349 test_input_files = sorted(file.readlines())350 self.test_input_files = list()351 self.test_expert_files = list()352 for i in range(len(test_input_files)):353 self.test_input_files.append(os.path.join(root,"middle_480p",test_input_files[i][:-1] + ".png"))354 self.test_expert_files.append(os.path.join(root,"output_480p",test_input_files[i][:-1] + ".jpg"))355 def __getitem__(self, index):356 if self.mode == "train":357 img_name = os.path.split(self.set1_input_files[index % len(self.set1_input_files)])[-1]358 img_input = cv2.imread(self.set1_input_files[index % len(self.set1_input_files)],-1)359 img_exptC = Image.open(self.set1_expert_files[index % len(self.set1_expert_files)])360 seed = random.randint(1,len(self.set2_expert_files))361 img2 = Image.open(self.set2_expert_files[(index + seed) % len(self.set2_expert_files)])362 elif self.mode == "test":363 img_name = os.path.split(self.test_input_files[index % len(self.test_input_files)])[-1]364 img_input = cv2.imread(self.test_input_files[index % len(self.test_input_files)],-1)365 img_exptC = Image.open(self.test_expert_files[index % len(self.test_expert_files)])366 img2 = img_exptC367 img_input = np.array(img_input)368 #img_input = np.array(cv2.cvtColor(img_input,cv2.COLOR_BGR2RGB))369 if self.mode == "train":370 ratio = np.random.uniform(0.6,1.0)371 W,H = img_exptC._size372 crop_h = round(H*ratio)373 crop_w = round(W*ratio)374 W2,H2 = img2._size375 crop_h = min(crop_h,H2)376 crop_w = min(crop_w,W2)377 i, j, h, w = transforms.RandomCrop.get_params(img_exptC, output_size=(crop_h, crop_w))378 img_input = TF_x.crop(img_input, i, j, h, w)379 img_exptC = TF.crop(img_exptC, i, j, h, w)380 i, j, h, w = transforms.RandomCrop.get_params(img2, output_size=(crop_h, crop_w))381 img2 = TF.crop(img2, i, j, h, w)382 if np.random.random() > 0.5:383 img_input = TF_x.hflip(img_input)384 img_exptC = TF.hflip(img_exptC)385 if np.random.random() > 0.5:386 img2 = TF.hflip(img2)387 a = np.random.uniform(0.8,1.2)388 img_input = TF_x.adjust_brightness(img_input,a)389 img_input = TF_x.to_tensor(img_input)390 img_exptC = TF.to_tensor(img_exptC)391 img2 = TF.to_tensor(img2)392 return {"A_input": img_input, "A_exptC": img_exptC, "B_exptC": img2, "input_name": img_name}393 def __len__(self):394 if self.mode == "train":395 return len(self.set1_input_files)396 elif self.mode == "test":...

Full Screen

Full Screen

test_input_reader.py

Source:test_input_reader.py Github

copy

Full Screen

1"""Test cases to read inputs from text files."""2import input_reader as ir # pylint: disable=import-error3import os4import unittest5from .test_config import test_config_data6CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))7class TestInputReader(unittest.TestCase):8 """Tests of input reader functions."""9 def test_if_correct_number_of_rows_are_returned_from_input_file(self):10 input_file = os.path.join(11 CURRENT_DIR, "test_input_files/test_input.txt")12 expected = 313 actual = len(ir.read_input(input_file))14 self.assertEqual(expected, actual)15 def test_if_correct_strings_are_returned_with_secret_message_striped_for_white_spaces_at_ends(16 self):17 input_file = os.path.join(18 CURRENT_DIR, "test_input_files/test_input.txt")19 expected = ["KINGDOMONE SECRETMESSAGEONE",20 "KINGDOMTWO SECRET MESSAGE TWO",21 "KINGDOMTHREE SECRET MESSAGETHREE"22 ]23 actual = ir.read_input(input_file)24 self.assertEqual(expected, actual)25 def test_if_True_is_returned_if_input_format_is_correct(self):26 input_file = os.path.join(27 CURRENT_DIR, "test_input_files/test_input.txt")28 lines = ir.read_input(input_file)29 regex = test_config_data.get("std_input_format")30 result = ir.validate_format(regex, lines)31 self.assertTrue(result)32 def test_if_False_is_returned_if_input_format_is_not_correct(self):33 input_file = os.path.join(34 CURRENT_DIR, "test_input_files/bad_test_input.txt")35 lines = ir.read_input(input_file)36 regex = test_config_data.get("std_input_format")37 with self.assertRaises(ir.InputFormatError):...

Full Screen

Full Screen

test_add_js_files.py

Source:test_add_js_files.py Github

copy

Full Screen

1from govuk_tech_docs_sphinx_theme import add_js_files2from pathlib import Path3from typing import List4from unittest.mock import MagicMock, call5import pytest6# Define the input file path list for the test case7args_test_add_js_files = [8 [Path("hello/world.js")],9 [Path("foo/bar.js")],10 [Path("hello/world.js"), Path("foo/bar.js")],11]12@pytest.mark.parametrize("test_input_files", args_test_add_js_files)13class TestAddJsFiles:14 def test_calls_add_js_file_correctly(self, test_input_files: List[Path]) -> None:15 """Test that the `Sphinx.add_js_file` method is called correctly."""16 # Mock the `app`17 test_input_app = MagicMock()18 # Execute the function, and assert the `add_js_file` method is called correctly19 add_js_files(test_input_app, test_input_files)20 assert test_input_app.add_js_file.call_count == len(test_input_files)21 test_input_app.add_js_file.assert_has_calls(22 [call(a) for a in test_input_files], any_order=False...

Full Screen

Full Screen

Automation Testing Tutorials

Learn to execute automation testing from scratch with LambdaTest Learning Hub. Right from setting up the prerequisites to run your first automation test, to following best practices and diving deeper into advanced test scenarios. LambdaTest Learning Hubs compile a list of step-by-step guides to help you be proficient with different test automation frameworks i.e. Selenium, Cypress, TestNG etc.

LambdaTest Learning Hubs:

YouTube

You could also refer to video tutorials over LambdaTest YouTube channel to get step by step demonstration from industry experts.

Run gabbi automation tests on LambdaTest cloud grid

Perform automation testing on 3000+ real desktop and mobile devices online.

Try LambdaTest Now !!

Get 100 minutes of automation test minutes FREE!!

Next-Gen App & Browser Testing Cloud

Was this article helpful?

Helpful

NotHelpful